LPA Scheme for the LHC Luminosity Upgrade

Chandra Bhat

Accelerator Division Seminar

September 29, 2009
Fermilab
Outline

Motivation

Introduction
 - LHC luminosity upgrade scenarios
 - Colliding beams of Gaussian versus Flat bunches

Recent Beam Studies on Flat bunches
 - Studies in the CERN PS and SPS
 - Flat Bunches in the Fermilab Recycler

Prospects for the LHC

Issues to explore

Conclusions and Plans
Motivation

The LHC will be the highest energy collider in the world for at least one-two decades.

By design, the LHC luminosity $= 10^{34}$ cm$^{-2}$sec$^{-1}$.

The “Flat Bunch” or “Large Piwinski Angle” (LPA) scheme has a very high potential to achieve the goal of $L \geq 10^{35}$ cm$^{-2}$sec$^{-1}$.

The Piwinski angle ϕ_P is given by,

$$\phi_P = \frac{\theta_c \sigma_z}{2\sigma_x}$$

θ_c is crossing angle
σ_z is RMS bunch length
σ_x is RMS transverse beam size

In this scheme one can get $\sim 40\%$ higher luminosity than the standard scheme with Gaussian bunches even with the same bunch intensity and the total beam-beam tune shift if the flat-bunch line intensity is kept the same as that of Gaussian peak intensity. \(\text{(F. Ruggiero and F. Zimmermann (PRST-AB-Vol. 5, 061001 (2002))}\)

Hence the interest in flat bunches in the LHC!
CERN Large Hadron Collider

- CMS (IP5)
 - Xing in H-plane
- SPS
 - RF: 400MHz
- ATLAS(IP1)
 - Xing in V-plane
- LHC
 - RF: 200 & 800MHz
- LHC-B
 - RF: 2.8-10, 20, 40, 80 and 160MHz
- ALICE
- PS
 - RF: 2.8-10, 20, 40, 80 and 160MHz
CERN Complex Upgrade Path
Present LHC Upgrade Paths

F. Zimmermann, CARE-HHH Workshop, 2008

\(\varepsilon_\perp \text{(Normalized)} = 3.75 \ \mu m, \text{Allowed} \ \Delta Q_{\text{sum}} < 0.015 \) (LHC Design Rept. III)

<table>
<thead>
<tr>
<th>Parameter Long. Profile</th>
<th>Nominal Gaussian</th>
<th>Ultimate Gaussian</th>
<th>ES & FCC Gaussian</th>
<th>LPA Flat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunch Length (RMS)</td>
<td>cm</td>
<td>7.55</td>
<td>7.55</td>
<td>7.55</td>
</tr>
<tr>
<td>bunch intensity</td>
<td>(10^{11})</td>
<td>(1.15)</td>
<td>(1.7)</td>
<td>(1.7)</td>
</tr>
<tr>
<td># of bunches</td>
<td>2808</td>
<td>2808</td>
<td>2808</td>
<td>1404</td>
</tr>
<tr>
<td>Average Current</td>
<td>I[A]</td>
<td>0.58</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>bunch spacing</td>
<td>ns</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>(\beta^*) at IP1&5</td>
<td>m</td>
<td>0.55</td>
<td>0.5</td>
<td>0.08</td>
</tr>
<tr>
<td>crossing angle, (\phi_p)</td>
<td>(\mu \text{rad, Rad})</td>
<td>285, 0.64</td>
<td>315, 0.75</td>
<td>0, 0</td>
</tr>
<tr>
<td>hourglass factor</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0.86</td>
</tr>
<tr>
<td>peak lumi (\mathcal{L})</td>
<td>(10^{34}\text{cm}^{-2}\text{s}^{-1})</td>
<td>1.0</td>
<td>2.3</td>
<td>15.5</td>
</tr>
<tr>
<td>average (\mathcal{L}) (turnaround time 5h)</td>
<td>(10^{34}\text{cm}^{-2}\text{s}^{-1})</td>
<td>0.6</td>
<td>1.2</td>
<td>3.6</td>
</tr>
<tr>
<td>event pile-up</td>
<td></td>
<td>19</td>
<td>44</td>
<td>294</td>
</tr>
</tbody>
</table>

Note that ES and FCC scheme assume the \(\beta^* \) is 0.08m 😞
LHC upgrade paths with $L \geq 10^{35}$ cm$^{-2}$sec$^{-1}$
(F. Zimmermann, CARE-HHH Workshop, 2008)

Early Separation (ES)
- stronger triplet magnets
- D0 dipole
- small-angle crab cavity
- ultimate beam (1.7×10^{11} p’s/bunch, 25 ns spacing), $\beta^* \sim 10$ cm
- early-separation dipoles in side detectors, crab cavities → hardware inside ATLAS & CMS detectors,
 first hadron crab cavities; off-δ β, $\varepsilon_{\perp}=3.75 \mu$radian

Full Crab Crossing (FCC)
- stronger triplet magnets
- small-angle crab cavity
- ultimate LHC beam (1.7×10^{11} p’s/bunch, 25 ns spacing)
- $\beta^* \sim 10$ cm, $\varepsilon_{\perp}=3.75 \mu$radian
- crab cavities with 60% higher voltage → first hadron crab cavities, off-δ β-beat

Large Piwinski Angle (LPA)
- larger-aperture triplet magnets
- wire compensator
- 50 ns spacing, longer & more intense bunches ($\sim 6 \times 10^{11}$ p’s/bunch)
- $\beta^* \sim 25$ cm, no elements inside detectors, $\varepsilon_{\perp}=3.75 \mu$radian
- long-range beam-beam wire compensation → novel operating regime for hadron colliders, beam generation

Low Emittance (LE)
- stronger triplet magnets
- $\beta^* \sim 10$ cm, $\varepsilon_{\perp}=1 \mu$radian
- smaller transverse emittance → constraint on new injectors, off-δ β-beat

J.-P. Koutchouk
R. Garoby
L. Evans,
W. Scandale,
F. Zimmermann

F. Ruggiero,
W. Scandale.
F. Zimmermann

(F. Zimmermann, CARE-HHH Workshop, 2008)
Some History of Flat Bunches

- Used in ISR, CERN (1971-1983)
- Proposal to use FLAT bunches at LHC
 - Ken Takayama (PRL88, 2002)
 - F. Ruggiero and F. Zimmermann (PRST-AB, 2002)
- Flat bunch applications worldwide
 - Fermilab Collider program: Recycler 2000-present.
 Have used barrier rf system since its inception (~1982).
 - CERN-SPS Flat bunches with barrier buckets (2000).
 - KEK Induction Accelerator (~from 2000)
 - FAIR Project at Darmstadt is planning to use flat bunches lots of theoretical work is being carried out

\[L_{\text{peakmax}} = 1.4 \times 10^{32} \text{cm}^2/\text{sec} \]
\[<I_{\text{max}} > = 57 \text{Amp} \]
\[E_{\text{cm}} = 62 \text{GeV} \]
Luminosity and Beam-beam Tune-shifts for Colliding Beams

Luminosity for single crossing is given by,

\[L = 2 cf_{rev} \cos^2 \left(\frac{\theta_c}{2} \right) \int n_1 n_2 dV dt \]

Incoherent beam-beam tune shift due to additional focusing and defocusing EM force caused by one beam on the other beam is given by,

\[\Delta Q_{x,y} = \frac{1}{4\pi} \int \Delta k_{x,y}(z) \beta_{x,y}(z) dz \]

Luminosity Expressions

Gaussian and Rectangular Colliding Beams

Luminosity for two colliding beams with **Gaussian** (RMS bunch length=“σ_z“) line-charge distributions is,

$$L_G = \frac{2 f_{\text{rev}} n_b N_p^2}{(2\pi)^2 \sqrt{2\sigma_z}} \int_{-\infty}^{\infty} \cos\left[\frac{\theta_c}{2}\right] \exp\left\{-z^2 \left[\frac{\sin^2\left[\frac{\theta_c}{2}\right]}{\sigma_{\perp}(z)^2} + \frac{\cos^2\left[\frac{\theta_c}{2}\right]}{\sigma_z^2}\right]\right\} dz$$

Luminosity for two colliding beams with **Rectangular** line-charge distributions of bunch length “l_b” is,

$$L_{\text{Flat}} = \frac{f_{\text{rev}} n_b N_p^2}{2\pi l_b} \int_{-l_b/2\cos(\theta_c)}^{l_b/2\cos(\theta_c)} \cos\left[\frac{\theta_c}{2}\right] \exp\left\{-z^2 \left[\frac{\sin^2\left[\frac{\theta_c}{2}\right]}{\sigma_{\perp}(z)^2} + \frac{\cos^2\left[\frac{\theta_c}{2}\right]}{\sigma_z^2}\right]\right\} \left[1 - \frac{2|z|\cos\left[\frac{\theta_c}{2}\right]}{l_b}\right] dz$$

where, f_{rev}, N_p, n_b, and σ_{\perp} are revolution frequency, Number of protons/bunch, number of bunches/beam and RMS transverse size of the colliding beam, respectively.
Beam-beam Tune-shifts
Gaussian and Rectangular Colliding Beams

The total beam-beam spread for colliding beams with two interaction points in the ring – one crossing horizontally and another crossing vertically but with similar values of crossing angles θ_c.

$$\Delta Q_{GTotal} = \Delta Q_{GX} + \Delta Q_{GY} = -\frac{N_p r_p \beta^*}{\sqrt{2\pi} \gamma \sigma_z} \int_{-l_{det}/2}^{l_{det}/2} \left(1 + \frac{z^2}{\beta^* \sigma_z^2} \right) \exp \left(-\frac{2z^2}{\sigma_z^2} \right) G(\sigma_z, z) dz$$

where
$$G(\sigma_z, z) = \frac{2}{\sigma_z^2} \left(1 - \exp \left(-\frac{\theta_c^2 z^2}{2\sigma_z^2(z)} \right) \right) + \frac{1}{\sigma_{\perp}^2(z)} \left(1 - \exp \left(-\frac{\theta_c^2 z^2}{2\sigma_{\perp}^2(z)} \right) \right)$$

The beam-beam spread for colliding rectangular beams is

$$\Delta Q_{FTotal} = \Delta Q_{FX} + \Delta Q_{FY} = \frac{N_p r_p \beta^*}{l_b \pi \gamma} \int_{-l_{det}/2}^{l_{det}/2} \left(1 + \frac{z^2}{\beta^* \sigma_z^2} \right) F(z) dz$$

where
$$F(z) = \left[\left(\frac{\cos(\theta_c) - 1}{z^2 \sin(\theta_c)^2} \right) \left(1 - \exp \left(-\frac{\sin^2(\theta_c) z^2}{2\sigma_{\perp}^2(z)} \right) \right) - \frac{\cos(\theta_c)}{\sigma_{\perp}^2(z)} \exp \left(-\frac{\sin^2(\theta_c) z^2}{2\sigma_{\perp}^2(z)} \right) \right]$$

with, r_p = classical radius of the proton.

Assuming no shielding inside the detector of length l_{det}
Special Cases of Beam-beam Tune-shifts

For Gaussian bunches with small θ_c with $\sin(\theta_c) \approx \theta_c$ & $\cos(\theta_c) \approx 1$ and $\sigma_{\perp}^* << \sigma_z << \beta^*$ at the interaction points, and $1 + \left(\frac{\sigma_z \theta_c}{2 \sigma_{\perp}}\right)^2 \approx \left(\frac{\sigma_z \theta_c}{2 \sigma_{\perp}}\right)^2$ then one can show that,

$$L_G \approx \frac{\pi}{2} \frac{f_0 \gamma^2 \sigma^* \sigma_z}{r_p^2 \beta^* \theta_c} \Delta Q_{GTotal}^2 \text{ with } \Delta Q_{GTotal} \approx -\frac{N_p r_p \beta^*}{\pi \gamma \sigma^* \sigma_z \theta_c}$$

Similarly, for the rectangular bunches with small θ_c and $\sigma_{\perp}^* << \sigma_z << \beta^*$ also with $\beta^* \theta_c / \sigma_{\perp}^* >> 1$

$$L_F \approx \frac{\sqrt{2}}{\pi} \frac{f_0 \gamma^2 \sigma^* l_b}{r_p^2 \beta^* \theta_c} \times \Delta Q_{FTotal}^2 \text{ with } \Delta Q_{FTotal} \approx \sqrt{\frac{2}{\pi}} \frac{l_b}{\sigma^* \gamma \theta_c}$$

Now, by taking the ratio of these two expressions one can show that, the Luminosity of rectangular bunch crossing is a factor of $\sqrt{2}$ larger than that of a Gaussian bunch crossing if $\Delta Q_{FTotal} = \Delta Q_{GTotal}$ and $l_b = \sqrt{2\pi} \sigma_z$.

However,
Generating Flat Bunches

- Bunches with uniform or nearly uniform line-charge distribution are “Flat Bunches”

 ![Graph showing Normal Bunch and Flat Bunch](image)

- Transform While preserving the Intensity & Emittance.

- There are several ways to create flat bunches
 - Using resonant rf systems
 - Double, triple or multiple harmonic rf system
 - Longitudinal hollow bunches, Carli’s technique
 - Barrier rf to generate Flat bunches
Flat bunches with Double Harmonic RF

References

- Diagnosis of longitudinal instability in the PS Booster occurring during dual harmonic acceleration, A. Blas et. al., PS/RF/Note 97-23 (MD).
- Elena Shaposhnikova, CERN SL/94-19 (RF) \(\leftrightarrow\) Double harmonic rf system; Shaposhnikova et. al., PAC2005 p, 2300.
- Empty Bucket deposition in debunched beam, A. Blas, et.al., EPAC2000 p1528.
- Beam blowup by modulation near synchronous frequency with a higher frequency rf, R. Goraby and S. Hancock, EPAC94 p 282
- a) Creation of hollow bunches by redistribution of phase-space surfaces, (C. Carli and M. Chanel, EPAC02, p233) or
 b) recombination with empty bucket, C. Carli (CERN PS/2001-073).
- RF phase jump, J. Wei et. al. (2007)
Past Effort at CERN (cont.): Flat Bunches Acceleration Experiment

Tomographic Reconstruction of Phase space

Subsequently, they perfected the technique of hollow bunch acceleration in PSB for bunches ~8E12/bunch. (PAC1999, p143)

However,

- by having small hollow did not give flat enough bunches
- large hollow led to double peaked bunches which were unstable.

Note: These bunches were not created with Carli’s Technique
Recent Studies on Flat Bunches at CERN

CERN Collaborators

- Frank Zimmermann
- Oliver Brüning
- Elena Shaposhnikova
- Thomas Bohl
- Trevor Linnecar
- Theodoros Argyropoulos
- Joachim Tuckmantel
- Elias Metral, Giovanni Rumolo

PS, SPS and RF

- Heiko Damerau
- Steven Hancock
- Edgar Mahner
- Fritz Caspers

J. MacLachlan (ESME simulations)

Humberto Maury Cuna, CINVESTAV, Mexico (e-cloud simulations)
Flat Bunches with Double Harmonic RF during Recent MDs

Studies in PS

- **November 2008**
 - LHC-25 cycle, Flat Bunch at 26 GeV
 - Beam Intensity: ~8.42E12 \(\leftarrow\) Equivalent LHC nominal Intensity
 - Bunch Emittance:~1.4 eVs \(\leftarrow\) Nominal emittance to LHC beam
 - RF with \(V(h=21)=31kV\) and \(V(h=42)=16kV\) \(\leftarrow\) \(V42/V21\sim0.5, 0.0\)

- **July 2009**
 - PS Cycle and Emittance same as above, Intensity about 15% larger
 - RF with \(V(h=21)=10kV\) and \(V42/V21=0.0\) to 1.0 in steps of 0.1

Studies in SPS

- **November 2008: Study on BLM and BSM**
 - Coasting beam at 270 GeV
 - # Bunches =4, with bunch separation of 520 nsec
 - Bunch intensity and emittances were similar to Nominal LHC beam
 - RF with \(V(800MHz)/V(200MHz) = 0.25\), with varieties of \(V(200MHz)\)

- **July 2009: Study on BLM and BSM**
 - Studies at 26 GeV
 - # Bunch= 1, Varying Bunch Intensity and emittance (max. comparable to LHC beam)
 - RF with \(V(800MHz)/V(200MHz) = 0.25\) and .1 , with \(V(200MHz)=1.7MV\)

The data is being analyzed
Beam Studies in the PS

- Create flat bunches using double/triple harmonic RF system with $V_2/V_1 \sim 0.5$ above transition energy.
- Study beam instability \leftrightarrow single and coupled bunch
- Investigate beam-loading effects.
Bunch Flattening in the PS at 26 GeV & its stability

C. Bhat, H. Damerau S. Hancock, E. Mahner, F. Caspers

ESME simulations

Using 10 and 20 MHz rf systems with bunch spacing = 100nsec

Predicted ≈ 20% increase in RMSW from beginning of rf manipulation to the flattened bunch

AD Seminar, 09/29/2009 - Chandra Bhat
LHC25(ns) cycle in the CERN PS

Triple splitting after 2nd injection

Inject 4+2 bunches

\(h = 7 \)

\(h = 21 \)

Split in four at flat-top energy

Eject 72 bunches

\(h = 84 \)
PS Beam Studies using LHC25

RF ramp used in the transforming nominal bunches to flat bunches

10 MHz RF system only, 32 kV at $h=21$

Vrf($h=21$) = 31 kV and Vrf($h=42$) = 16 kV

<table>
<thead>
<tr>
<th>h</th>
<th>Vrf</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>32 kV</td>
</tr>
<tr>
<td>42</td>
<td>0</td>
</tr>
</tbody>
</table>

- Beam showed coupled bunch oscillations while in $h=21$
- Became unstable near extraction

- Beam was stable till extraction (~ 120 ms)
- Some oscillations seen when beam was in mostly $h=21$

End of acceleration

Extraction

C. M. Bhat, et. al., PAC2009 Vancouver

C. M. Bhat, et. al., PAC2009 Vancouver
Conclusions: The observed coupled bunch instabilities in the PS with single harmonic rf system can not be accounted for by the known cavity impedances. The new kickers in PS are suspected to be the possible source of impedances.
→ Large synchrotron frequency spread improves the stability.

→ If \(\frac{df_i}{dt} = 0 \) inside the bucket the particle in the vicinity of this region can become unstable against collective instabilities.

V. I. Balbekov et al., Vol. 62, No.2, pp. 98-104, 1987

→ As the slope of the rf wave is reduced to zero at the bunch center, the bunch becomes longer and synchrotron frequency spread is greatly increased. This increases Landau damping against coupled bunch instabilities.

By a detailed study, Heiko concluded that a small phase errors (~ 2°) between h=21 and h=42 lead to significant asymmetry of bunches. Hence, we need transient beam loading compensation.
July 2009 Studies:
(A first look)

Beam (4σ) Emittance = 1.45 eVs, Batch intensity=924E10

Conclusions:
The flat bunches created using double harmonic rf with harmonic ratio of 2:1 can be made stable if proper rf/beam parameters are chosen.
Bunch Flattening in the PS at 26 GeV & its stability (ESME simulations)

Using 10, 20 & 40 MHz rf systems with bunch spacing = 50nsec

≈ 150 ms

Work in Progress
Flat Bunches in the Fermilab Recycler
Recycler RF System to Produce Flat Bunches

Recycler
Broad-band RF Cavities
of Cavities = 4
Rs ~ 50Ω
10kHz-100MHz

Practically one can produce rf waveform of any shape

MI60 straight Section
Flat Bunches in the Recycler

Schematic of the RF profiles for the flat beam in the RR

T1 T2 +1.8kV

-1.8kV

Rectangular rf waveform

+1.8 kV

-1.8 kV

0.68 μs

6.13 μs

or Flat bunches of any length <~11 μsec
Typical Flat Bunches in the Recycler
(2007 - Present)

Experiment:
~ 25% drop in peak intensity
~ 15% drop in rms energy spread

For e-cooled beam the peak density is larger

\[\Delta E_{1/2} = 8.34 \text{ MeV} \]
\[\Delta E_{1/2} = 10 \text{ MeV} \]

~ 25% drop in peak intensity
~ 15% drop in rms energy spread

For e-cooled beam the peak density is larger

\[\Delta E_{1/2} = 8.34 \text{ MeV} \]
\[\Delta E_{1/2} = 10 \text{ MeV} \]

~ 25% drop in peak intensity
~ 15% drop in rms energy spread

For e-cooled beam the peak density is larger

AD Seminar, 09/29/2009 - Chandra Bhat
Removal of the Distortion of the Flat Bunches, the 1st Attempt

By using proper combination of filters the unwanted component was removed.

J. Dey, D. Kubicki and J. Reid, PAC2003, 1204.
Potential Well Distortion due to Beam Loading Effects:
Bunch profile as a Function of Intensity

Potential Well Distortion due to the resistive part of the coupling impedance was observed by increasing the bunch intensity at a fixed bunch length (flat bunch). First observation of such effects in hadron machines (according to one of my theory friends, K. Y. Ng).

Recycler Beam Loading Effect: Function of Bunch Length

By varying the bunch length on the same beam showed that it needs further improvements.

The inverse of the potential well and beam wall current monitor data are found to be strongly correlated (M. Hu) indicated necessity of rf corrections beyond the linear corrections.

Identification of RF Imperfections
J. Crisp et al, HB2006 (2006) 244

FPGA based adaptive correction system,
M. Hu et. al, PAC2007,p458

Conclusions: Beam loading issues of the RR flat bunches is taken care-off
Revisited the longitudinal stability of the flat bunches in the Recycler barrier buckets for different density distributions.

With the line density $\lambda(\tau)$, the longitudinal distribution is given by

$$\lambda(\tau) = \int_{-\Delta E_b(\tau)}^{\Delta E_b(\tau)} \rho(\Delta E, \tau) d(\Delta E) = \begin{cases}
\lambda_0[U(\tau) - U_b]^{p+1/2} & \text{Binominal dist.} \\
\lambda_0[U(\tau) - U_b] & \text{Eliptic dist.} \\
\lambda_0 \exp\left\{ - \frac{eU(\tau)}{H_0 T_0} \right\} & \text{Exponential dist.}
\end{cases}$$

With $U(\tau) = \int V(t) dt$ and $\Delta E_b(\tau)$ being the energy spread in the presence of the space charge.

Non of the above distributions match with the observed beam profiles.

The longitudinal distribution that describes the Recycler flat bunches is a \tanh dist.

$$\lambda_{fit}(\tau) = N_b a \{ [1 + \tanh(b\tau + c)]\theta(-\tau) + [1 - \tanh(b\tau - c)]\theta(\tau) \}$$

$$\lambda_{fit}(0) = N_b a (1 + \tanh c)$$

θ is the step function, a, b & c are three parameters from fit.

The intensity limit is estimated using this dist. for a **6.1µs flat bunch**, where the coherent dipole frequency is at the edge of the incoherent synchrotron frequency dist. in the presence of the space charge.

$$I_{limit} \approx 4E14 \ p$$
Beam Studies in the SPS
November 2008

BSM V4/V1 = 0.25
Beam Energy = 270 GeV
Number of Bunches = 4
Intensity ~ 1E11 (LHC type)

Range of Vrf in the Experiment

<table>
<thead>
<tr>
<th>RF</th>
<th>h</th>
<th>Vrf(MV)</th>
<th>Ratio V4/V1</th>
</tr>
</thead>
<tbody>
<tr>
<td>200MHz</td>
<td>4620</td>
<td>1-2</td>
<td></td>
</tr>
<tr>
<td>800MHz</td>
<td>18480</td>
<td>0.1-0.5</td>
<td>±0.1 to ±0.25</td>
</tr>
<tr>
<td>E</td>
<td>26 GeV and 270 GeV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We repeated the experiments with a single bunch during July – Aug, 2009 MD period in order to eliminate any multi-bunch effects. We found

- **BLM is unstable** under almost all time.
- To our surprise, bunch in a single harmonic was showing a sign of instability ← this is disturbing
- **BSM is more stable** almost all time.

More studies are being carried out

What is going on here?
Prospects for the LHC
Two scenarios for creating flat bunches at LHC are investigated

- Flat Bunches at the Top energy
 - Using 400 MHz and 800 MHz RF \(\rightarrow \) This gives 41 cm long flat bunches, BUT!?!?
 - Using the 200 MHz (R. Losito et. al, EPAC2004, p956) and 400MHz RF systems in the Ring.

- Flat Bunches creation at 450 GeV and acceleration
Bunch Flattening of the LHC Beam at 7 TeV with 400 MHz and 800 MHz rf

Vrf(400MHz) = 16 MV

Vrf(400MHz) = 16 MV + Vrf(800MHz) = 8.5 MV

Normal Bunch

Flattened Bunch

ΔE vs Δt

2.5 eVs

Line charge Distribution

σz = 7.5 cm

Energy Distribution

ΔE = 3.2 GeV

rms = 0.72 GeV

Mountain Range

RMS Bunch Length vs Time

ΔE = 2.6 GeV

rms = 0.6 GeV

RMS Energy Spread vs Time
Acceptable Flat Bunches at LHC
with 400MHz+800MHz RF

LE=2.5eVs, Lb=41cm

<table>
<thead>
<tr>
<th>h</th>
<th>Vrf</th>
</tr>
</thead>
<tbody>
<tr>
<td>35640</td>
<td>16MV</td>
</tr>
<tr>
<td>71280</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Conclusions:
The 41 cm long flat bunches (2.5 eVs) with 400MHz+800MHz rf systems may be susceptible to beam instability.
Bunch Flattening of the LHC Beam at 7 TeV with 200 MHz and 400 MHz rf

V_{rf}(400 MHz) = 8 MV

\[\Delta E \text{ vs } \Delta t \]

\[\sigma_z = 8.5 \text{ cm} \]

\[\Delta E = 2.6 \text{ GeV} \quad \text{rms} = 0.56 \text{ GeV} \]

Normal Bunch

\[\Delta E = 2.5 \text{ eVs} \]

\[l_b = 70 \text{ cm} \]

Line charge Distribution

\[\Delta E = 1.3 \text{ GeV} \quad \text{rms} = 0.3 \text{ GeV} \]

Energy Distribution

Flattened Bunch

\[\Delta E = 2.5 \text{ eVs} \]

\[\text{Mountain Range} \]

\[\text{Time for flattening } \approx 10 \text{ sec} \]

\[\text{LHC Flat Bunch at 7 TeV (No SC, BB), 2.5 eVs, TET2} \]

\[\text{every 650 turns, from turn 650} \]

\[\text{Comments: Required 200 MHz rf cavities exist.} \]
Flat Bunches at Injection & Acceleration using 400MHz and 200 MHz rf systems

LHC design assumes about 2.5eVs/bunch at 7 TeV
Conclusions:
The <75 cm long flat bunches (2.5 eVs) with 200Mhz+400Mhz rf systems are stable.
ECLOUD Simulations for Nominal and Flat bunches

Average Heat Load 2nd Batch

Nominal LHC Beam
Ultimate LHC Beam

Conclusions:
The estimated e-cloud effect from flat bunches is many times smaller than that with Gaussian bunches.

Humberto Maury Cuna, CINVESTAV, Mexico
LPA Scheme – Some Options

ε_{\perp} (Normalized) = 3.75 μm, Allowed $\Delta Q_{\text{sum}} < 0.015$ (LHC Design Rept. III)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Long. Profile</th>
<th>Nominal Gaussian</th>
<th>LPA Scheme</th>
<th>Bunches with Harmonic RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunch Length (RMS)</td>
<td>cm</td>
<td>7.55</td>
<td>11.5</td>
<td>22</td>
</tr>
<tr>
<td>bunch intensity</td>
<td>10^{11}</td>
<td>1.15</td>
<td>4.9</td>
<td>6.3</td>
</tr>
<tr>
<td>LE (4σ)</td>
<td>eVs</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Average Current</td>
<td>I[A]</td>
<td>0.58</td>
<td>1.22</td>
<td>1.6</td>
</tr>
<tr>
<td>bunch spacing</td>
<td>ns</td>
<td>25</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>RF Combination</td>
<td>MHz</td>
<td>400</td>
<td>400+800</td>
<td>200+400</td>
</tr>
<tr>
<td>β^* at IP1&5</td>
<td>m</td>
<td>0.55</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>crossing angle, ϕ_p</td>
<td>μrad, Rad</td>
<td>285, 0.64</td>
<td>381, 2.01</td>
<td>381, 3.7</td>
</tr>
<tr>
<td>peak lumi $\langle L \rangle$</td>
<td>10^{34}cm$^{-2}$s$^{-1}$</td>
<td>1.0</td>
<td>10.7</td>
<td>10</td>
</tr>
<tr>
<td>average $\langle L \rangle$</td>
<td>10^{34}cm$^{-2}$s$^{-1}$</td>
<td>0.6</td>
<td>3.5</td>
<td>3.8</td>
</tr>
<tr>
<td>(turnaround time 5h)</td>
<td></td>
<td></td>
<td>403</td>
<td>??</td>
</tr>
<tr>
<td>event pile-up</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Issues and Future Plans

Questions to answer:

- What are the optimal beam parameters for the LPA scheme?
- What is the optimal way to produce such flat bunches? And where to produce?
- What rf capability is needed to handle such bunches?
- What are the single-bunch & multi-bunch instability issues? In addition, are there serious e-cloud effects and, if so, how can these effects be mitigated?
- How to address the beam loading issues?
- How does this upgrade scenario fit within the current design of PS2?
- Is the number of interactions per collision going to be a problem for experiments?

Some have been partly addressed. Others being studied.
Summary and Conclusions

The large Piwinski angle scheme is a viable path for the LHC luminosity towards 10^{35} cm$^{-2}$sec$^{-1}$. I am optimistic this can be done! But, there are a number of issues, may be unique to the LHC, that need to be investigated.

The results from studies in the PS and SPS are very encouraging.

I have discussed flat bunch creation at 450 GeV and its acceleration with 200MHz+400MHz systems. Some problems need to be overcome.

I have discussed two scenarios for LHC flat bunch creation at the top energy.

- 400MHz+800 MHz can be used to produce flat bunches with $l_b = 41$ cm. But this is not suitable from the point of view of beam stability at $LE= 2.5$ eVs.
- Combination of 200MHz+400MHz system seems more promising.

It will be useful to have a test 400MHz rf cavity ($V_{min} \sim 2$MV) in the SPS to conduct dedicated studies on the beam instability on flat bunches.

Flat bunch scenario is a very promising and viable path for the Luminosity upgrade at the LHC.