HQ design and analysis

Paolo Ferracin

LARP Collaboration Meeting
Napa Valley, CA
April 8-10, 2009
Outline

• Magnet design
• Magnetic analysis
 – Conductor peak field
 – Magnet parameters
 – Field quality and saturation effect
• Mechanical analysis
 – Pre-load conditions
 – Coil and structure stress
• Conclusions
Cable and coil design

- **Cable**
 - 35 strands
 - Width: 15.150 mm
 - Mid-thickness: 1.437 mm
 - Keystone angle: 0.750
 - Insulation thick.: 0.1 mm

- **Coil**
 - Aperture: 120 mm
 - 4 blocks
 - 46 turns
Magnet design
Cross-section

• Aluminum collars
 – 25 mm thick
 – OD = 570 mm
• 4-split iron yoke
• Bolted iron pads
 – Gaps for coil end support and cooling channels
• Iron masters
 – 2 bladders 50 mm wide
 – 2 interference keys
• Bolted aluminum collars for azimuthal alignment
• G10 sheet between coil and collars
Magnet design
3D components

- Yoke laminations, 50 mm thick with tie rods
- Iron pad laminations, 50 mm thick tie rods
- Collar laminations, 50 mm thick with tie rods
- Iron masters
 - Easy insertion and removal of coil pack (large clearance)
 - Continuous surface
 - Pad-yoke alignment
 - Improved tolerances
Magnet design
Axial support

• Stainless steel (Nitronic 40) end plate
 – 50 mm thick

• Aluminum axial rods
 – 34 mm diameter

• Axial pre-load provided by additional plate and piston
 – Piston actuated to spread apart the two end plates
 – Nuts to lock the pre-compression
Magnet design
Alignment

- Pins shell – yoke
- Master keys pad – yoke
 - Trapezoidal shape
 - Interference keys
 - Alignment keys
- Pad – Collar
- Collar – coil
 - Alignment keys
 - Under compression from assembly to excitation
Magnet design
From TQS to HQ

TQS

LQS

HQ
2D magnetic analysis
Conductor peak field and magnet parameters

- J_c of 3000 A/mm2 (4.2 K, 12 T)

- About 0.7 T difference between layer 1 and layer 2

<table>
<thead>
<tr>
<th>Layer 1</th>
<th>Layer 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp.</td>
<td>Current</td>
</tr>
<tr>
<td>K</td>
<td>kA</td>
</tr>
<tr>
<td>4.4</td>
<td>17.73</td>
</tr>
<tr>
<td>1.9</td>
<td>19.45</td>
</tr>
</tbody>
</table>

Paolo Ferracin
2D magnetic analysis
Iron saturation and field quality

- \(R_{\text{ref}} = 40 \text{ mm} \)
- At 120 T/m
 - All allowed harmonics below 0.5 units
- Saturation effect
 - \(b_6 \pm 1 \text{ unit from 0 to 20 kA} \)
3D magnetic analysis
Conductor peak field

- Peak field in the end located on pole turn, layer 2

- Stainless steel pad over ends
 - About 1% lower peak field in the end with respect to straight section
2D mechanical analysis
Parameters and model

• Computational steps
 – Bladder pressurization
 – Key insertion
 – Cool-down
 – Excitation

• Impregnated coil surfaces: bonded

• All other surfaces: 0.2 friction factor

• Contact pressure (or tension <20 MPa) between pole and coil

• Two gradient considered
 – 219 T/m: limit conditions
 – 180 T/m: coil peak stress <150 MPa

<table>
<thead>
<tr>
<th>Grad</th>
<th>T/m</th>
<th>180</th>
<th>219</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1</td>
<td>Fx</td>
<td>N/mm</td>
<td>+2187</td>
</tr>
<tr>
<td></td>
<td>Fy</td>
<td>N/mm</td>
<td>-1243</td>
</tr>
<tr>
<td></td>
<td>Fr</td>
<td>N/mm</td>
<td>+1620</td>
</tr>
<tr>
<td></td>
<td>Ft</td>
<td>N/mm</td>
<td>-1753</td>
</tr>
<tr>
<td>Layer 2</td>
<td>Fx</td>
<td>N/mm</td>
<td>+76</td>
</tr>
<tr>
<td></td>
<td>Fy</td>
<td>N/mm</td>
<td>-2103</td>
</tr>
<tr>
<td></td>
<td>Fr</td>
<td>N/mm</td>
<td>-724</td>
</tr>
<tr>
<td></td>
<td>Ft</td>
<td>N/mm</td>
<td>-2097</td>
</tr>
</tbody>
</table>
2D mechanical analysis
Bladder pressure and shell tension

• Pre-loading for 180 T/m
 – Bladder pressure: 23 MPa
 – Key interference: 0.3 mm
 – Shell tension:

• Pre-loading for 219 T/m
 – Bladder pressure: 46 MPa
 – Key interference: 0.6 mm
 – Shell tension:
2D mechanical analysis

Coil peak stress after cool-down

- **Pre-loading for 180 T/m**
 - Coil peak stress: 150 MPa
 - Pole area, inner radius, layer 1

- **Pre-loading for 219 T/m**
 - Coil peak stress: 192 MPa
 - Pole area, inner radius, layer 1
2D mechanical analysis
Coil peak stress with e.m. forces

- Pre-loading for 180 T/m
 - Coil peak stress: 144 MPa
 - Mid-plane, inner radius, layer 1

- Pre-loading for 219 T/m
 - Coil peak stress: 193 MPa
 - Mid-plane, inner radius, layer 1
3D mechanical analysis
Parameters and model

• Computational steps
 – Bladder pressurization
 – Key insertion
 – Cool-down
 – Excitation

• Impregnated coil surfaces: bonded

• All other surfaces: 0.2 friction factor

• Contact pressure between pole and coil
Comparison 2D-3D models
3D mechanical analysis
Aluminum rod tension and coil-pole

- Pre-loading for 219 T/m
 - E.m. force: 1372 kN
 - 620 kN applied at 4.2 K
 - <20 MPa tension at 219 T/m
3D mechanical analysis
Alignment key collar-coil

• Contact between collar and alignment key
Conclusions

• HQ is a field quality quadrupole with a 120 mm bore and an expected maximum gradient
 – 199 T/m at 4.4 K and 219 T/m at 1.9 K

• The shell based structure is based on the experience from TQS and LQS
 – Maintains the coil in contact with the pole in the straight section and in the end region up to short sample
 – Provides alignment to coil and structural components

• The coil peak stress can be maintained below 150 MPa with a pre-load for 180 T/m