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MOTIVATION

Particles coming from proton-proton collision debris impacts the

inner triplet magnets

→ energy deposition in the coils.

Heat flow paths and heat flow barriers identification in the magnet

→ need to give a feedback to the magnet designers.

Phase I LHC upgrade → enhanced insulation scheme → open

helium paths between the bath and the cable

→ necessary studies of magnet thermodynamics

Thermal studies of LARP Nb3Sn LHC upgrade phase II magnets

→ implement method used in phase I magnet studies
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Heat sources in the LHC magnets

Debris of the proton-proton interactions at accelerator interaction regions

Interaction of lost protons with collimators

Physics processes – BFPP (ion beam case)

Accidental beam losses

• Transient losses ~ns to ~ms
• Enthalpy of  the cable materials (~ns)

• Heat transfer to helium volume inside the cable (~ms)

• Enthalpy of  the cable (~ms)

• Steady-state losses
•Transfer of the heat from cable to the heat reservoir (~s)

•Magnet structure is vital

References:

D. Bocian, CERN AT-MTM note, EDMS 750204

P.P. Granieri, (D. Bocian), et al., CERN-LHC-PROJECT-Report-1089

D. Bocian et al., CERN-AB-2008-006
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Heat evacuation paths & heat flow barriers

HEAT FLOW BARRIERS

 cable insulation

 interlayer insulation

 ground insulation

 helium channel around cold bore
For temperatures above 2.16 K: transition HeII  HeI:
helium channels are blocked = less effective heat flow
due to the changing of heat evacuation path

A sketch of the heat transfer in the magnet at nominal operations (a) and at quench limit (b).
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NETWORK MODEL

HEAT FLOW

MODEL

ROXIE

magnet field 

distribution,

temperature 

margin

MAGNET

QUENCH 

LEVELS

FLUKA

beam loss profiles

TECHNICAL 

DRAWINGS

detailed magnet 

coil geometry

Material properties 

at low temperature

CRYODATA

OTHER 

non beam induced 

heat sources

Hysteresis losses

Eddy currents, etc.

A. Verweij

R. Wolf

Contribution to the quench level 

is order of  1-2%

MEASUREMENTS

model validation
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Network Model

coil model
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Network Model

The volumes occupied by helium in the magnet are considered as:

-narrow channels,

-semi-closed volumes = inefficient inlet of fresh helium.

The steady heat load, heat up the helium in the semi- closed volumes:

- Helium temperature well above superfluid helium temperature  at Tb=1.9K

- Critical helium temperature reached already below the calculated quench limit

Helium modeling



Dariusz Bocian Termodynamics Modeling of New LHC Quadrupole Magnet 9

heat

heat

VALIDATION

predicted 

quench 

current

measured 

quench 

current

END

MAGNET

EXPERIMENT

Heat source

- quench heaters

- inner heating apparatus

HEAT 
SOURCE

MODEL

MAGNET

MODEL

Network Model Validation

More details:

D. Bocian, B. Dehning, A. Siemko, Modeling of Quench Limit for Steady State 

Heat Deposits in LHC Magnets,IEEE Transactions on Applied 

Superconductivity, vol. 18, Issue 2, June 2008 Page(s):112 – 115;  CERN-AB-

2008-006, 2008;

D. Bocian, B. Dehning, A. Siemko, Quench Limit Model and Measurements for 

Steady State Heat Deposits in LHC Magnets, IEEE Transactions on Applied 

Superconductivity, vol. 19, Issue 3, June 2009 Page(s):2446 – 2449;

MQM magnets at 4.5 K
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New inner triplet phase I simulation status

Courtesy D. Tommasini

The nominal LHC cable insulation:

 two 11 mm tapes overlapping by 50% 

 one 9 mm tape with 2 mm spacing

Nominal parameters for current and phase I design of LHC inner triplet

Current design Phase I design

Operating temperature [K] 1.9 1.9

Nominal gradient [T/m] 205 120

Aperture diameter [mm] 70 120

Quadrupole length [m] 5.5 / 6.37 10

Nominal parameters for current and enhanced LHC cable insulation

Nominal Enhanced

Cable 1 Cable 2 Cable 1 Cable 2

Radial thickness 0.150 0.150 0.160 0.160

Azimuthal thickness 0.120 0.130 0.135 0.145

The enhanced insulation:

 one 9 mm tape with 1 mm spacing 

 four 2.5 mm tapes with 1.5 mm spacing

 one 9 mm tape with 1 mm spacing
Details: M. La China, et al., Phys. Rev. Spec. Top. Accel. Beams 11 (2008) 
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New inner triplet phase I simulation status

Peak Energy Deposit in coil
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A combining particle tracking, FLUKA shower simulations in a single magnet coil

Peak Energy Deposit in cold bore
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Energy deposits in selected bin of magnet cross 

section with peak value. Magnet has been divided 

longitudinally into 108 bins (~10 cm) 

The inner triplet quadrupole FLUKA simulations 

were ran with a thick Beam Screen (BS) in Q1 

(10.15 mm extra stainless steel shield added to 

the usual 2mm thick BS).
L=2.5*1034 cm-2s-1
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Temperature distribution in the magnet

Temperature distribution in the inner layer cables
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New inner triplet phase I simulation status
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flow from the magnet coil
at steady state heat load



Dariusz Bocian Termodynamics Modeling of New LHC Quadrupole Magnet 14

New inner triplet phase II simulation status
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Courtesy N. Mokhov

The COMSOL simulation included: 

• energy deposits in the coil

• cable material and insulation.

The simulation did not included:

• helium in the magnet

(channel around cold bore)

• energy deposits in the coldbore

L=2.5*1034 cm-2s-1
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The analysis of thermal bahaviour of the phase I 
quadrupole magnet was presented.

The heat flow paths and heat flow barriers were
identified with the thermal network simulation.

There is significant impact on magnet performance 
from energy deposits in cold bore. 

The size of helium channel around cold bore and 
cable insulation are the most critical parameters. 

Conclusions
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Implementation of the thermal network to phase II 
Nb3Sn magnet is needed to calculate quench limits and 
compare with phase I simulation.

The analysis of impact of helium channel around cold 
bore is necessary to optimize the channel width.

An experiment devoted to study of helium channel around 
cold bore is welcome

Possible use of network model to study different 
Nb3Sn cable insulation properties, for instance 
radiation hardness.

Future Plans
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Modeling of Nb3Sn coil length change 

during heat treatment 

D. Bocian, G. Ambrosio, F. Nobrega, M. Whitson / FNAL

A. Bonasia, L. Bottura, L. Oberli / CERN 

B. Walsh / NHMFL, M. Wake / KEK 

To be presented at Low Temperature Superconductor Workshop

Monterey, CA, November 10-11, 2009  
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Introduction

Presented results are the part of general studies leading to

understanding coil elements behavior during heat treatments. 

Work has been divided into several steps: 

I. Collection of relevant data and material properties for simulations

II. Preparation and conduct of necessary measurements

III. FEM simulation of the strand/cable/coil behavior during reaction

IV. Feedback to the coil fabrication technology
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Cable sample measurement
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Observed cable shrinkage was:

 0.85 mm for 5 kg load

 0.65 mm for 15 kg load. 

Extrapolation to 0 kg load shows a 0.95 mm cable shrinkage.

Cable sample: LARP Nb3Sn 

Strand: 54/61

Sample length: 104 cm

Target temperature: 210°C
Heating time at 210°C: 360 min.

Temperature ramp time: 2h 19min

Cooling time: 1h
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Strand sample measurement

Sample preparation:

Weld the ends of strand sample.

 Resize the ends of strands to fit required diameter.

 Chosen sample length ~ 48 mm Nb3Sn strand.

measured

sample

sample

holder

furnace

measurement tip

LVDT

reference

material

Results of nominal LQ heat treatment of strand smaple

Sample 1 Sample 2 Sample 3

Before HT [mm] 48.400 47.900 47.710

After HT [mm] 48.450 47.950 47.733

DL/L [%] 0.1 0.1 0.05

measurement of DL after HT - done

measurement during HT - in progress
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BACKUP TRANSPARENCIES
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Backup - Electrical equivalent
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The analogy of  the equivalent thermal 

circuit

Thermal circuit Electrical Circuit

T [K] Temperature V [V] Voltage

Q [J] Heat Q [C] Charge

q [W] Heat transfer rate i [A] Current

κ [W/Km] Thermal Conductivity σ [1/Ωm] Electrical Conductivity

RΘ [K/W] Thermal Resistance R [V/A] Resistance

CΘ [J/K] Thermal Capacitance C [C/V] Capacitance

The analogy between electrical and thermal circuit can be expressed as:

-steady-state condition Temperature rise      Voltage difference

-transient condition               Heat diffusion       RC transmission line



Dariusz Bocian Termodynamics Modeling of New LHC Quadrupole Magnet 23

Backup - Non beam loss heat loads

• Heat generated by electrical sources 
– For main dipole during ramp  (R. Wolf) [J/m]

• Hysteresis loss 240

• Inter-strand coupling (Rc = 7.5 mW) 45

• Inter-filament coupling (t = 25ms) 6.6

• Other eddy currents (spacers, collars..) 4

• Resistive joints (splices) 30

– Total  (per meter) ~325

A. Siemko, 14th “Chamonix Workshop”, January 2005

The first estimations shows contribution at the level of 0.5 mW/cm3

A detailed studies are ongoing (A. Verweij, R. Wolf)
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Helium in the magnet

Normal fluid and gaseous helium

In case of channels inside of the cable and μ-channels which are of the order of 0.2 mm and 

0.07 mm respectively, a typical nucleate boiling flux becomes much lower than that for 

helium bath which is 10 000 W/m2 [1]. The gaseous phase in the narrow channels is 

described by a constant heat transfer coefficient and is of the order of 70 W/m2/K as 

extrapolated from [2]. The convective heat transfer in steady state mode is restricted to heat 

fluxes not greater than a few mW/cm2 [3] as it is only relevant for large volumes. In case of 

helium inside the cable and in the μ-channels this mode is negligible.

[1] S.W. Van Sciver, Helium Cryogenics.

[2] M. Nishi et all., Boiling helium heat transfer characteristics in narrow cooling channel, IEEE TRANSACTIONS 

ON MAGNETICS, VOL. MAG-19, NO. 3, MAY 1983.

[3] C. Schmidt, Review of steady state and transient heat transfer in pool boiling helium I.

Superfluid helium

The heat flow in He II is calculated according formulae 

[Claudet et al., CRYOGENIE et ses applications en 

supraconductivite, IIF/IIR]

and X(T) is an experimental results fitting 
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The heat conductivity of superfluid 

helium is very high at low heat currents, 

but since it is non-linear it can be much 

reduced at high heat currents.

(W. F. Vinen. Superfluidity. CERN CAS 

School on Superconductivity, 1995.

At high heat currents the superfluid 

helium in the channel can „quench” 

resulting in transition to the normal fluid 

helium means that heat evacuation from 

the coil is reduced significantly resulting 

in quenching of the magnet.
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Cable parameters

Table 1: Cables parameters

unit Inner layer Outer layer

w mm 15.100 15.100

thick in mm 1.736 1.362

thick out mm 2.064 1.598

rad. insulation mm 0.160 0.160

az. insulation mm 0.135 0.145

n. strand 28 36

strand diameter mm 1.065 0.825

Cu/Sc ratio 1.65 1.95

Iss A 14800 (10T) 14650 (9T)

ΔIss/ΔB A/T 4680 (10T) 4050 (9T)
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New inner triplet E deposits simulation

Peak Energy Deposit in coil
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New inner triplet phase II simulation status
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