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ABSTRACT: The quadrupole moment measured with a quadrupole pickup
has been used to measure the transverse emittance of the beam. Unfortunately,
the poor S/N ratio in the measurement makes it difficult to produce good and
consistent emittance results. One way to enhance the S/N is to kick the beam
with a quadrupole kicker and then measure its quadrupole frequency response
(QFR) with a quadrupole pickup. This paper will show that if the bunched beam
is extremely short, the quadrupole tunes are well decoupled and far apart, and the
quadrupole tune spread is smaller than the synchrotron tune, then the emittance

can be extracted from the QFR.



INTRODUCTION

The use of a quadrupole pickup as a non-invasive method for measuring transverse
emittance is not new.l'2 However, this type of pickup has faced difficulties transitioning
from an “expert only” tool to an operational tool because of the poor S/N ratio which has
made it hard to get consistent and reproducible results. We quote from Koziol® who writes
about obtaining signals from quadrupole pickups: “Deriving an information that can be
quantitatively interpreted is quite an art. A prerequisite is careful centering of the beam in
the pick-up, otherwise the dipole oscillations will completely swamp the weak quadrupole
component.” It has been suggested by Cameron* that one possible way to enhance the
S/N is to use a quadrupole kicker to excite the beam and then measure the response with
a quadrupole pickup. Unfortunately, the quadrupole kicker will blow up the transverse

emittance of the beam. It is intuitively obvious why this happens:

A particle which goes through the centre of the quadrupole kicker gets
zero kick. However, any other particle that is off centred will experience a
kick that is proportional to the distance from the centre of the quadrupole.
(Compare this to a dipole kicker which has a constant size kick independent
of the particle’s transverse position). When this particle is kicked at its
quadrupole tune the size of each kick it sees will be stronger than the last
because it is moving proportionately further away from the centre. This is

the recipe for producing exponential growth.

With the above in mind, we have to be careful how we define the quadrupole mode
frequency response (QFR) because it does not exist if the particle moves further and further
away from the centre after every turn. To overcome this problem, Guo et al calculates the
emittance from the QFR for a kick that is always outside the quadrupole tune distribution
(c.f. AC dipole) for coasting beam. For us, we will define the QFR for extremely weak
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kicks which only last for a very short time so that the transverse emittance blow up is

minimal.

Of course, with such weak kicks, it really begs the question as to whether we are winning
the S/N battle. The 3D-BBQ electronics which will be used for measuring betatron tune at
the Large Hadron Collider (LHC) and presently installed in the Super Proton Synchrotron
(SPS), Relativistic Heavy Ion Collider (RHIC) and the Tevatron can see transverse motion
as small as 10 nm.% When it is installed as the electronics for a quadrupole pickup, its
sensitivity should allow us to measure the QFR to the accuracy needed for a good emittance

measurement.

For the rest of this paper we will set up the ground work that is necessary to find the
relationship between the QFR and the emittance for bunched beam. The first requirement
is for us to solve the differential equations which govern single particle motion when it
is weakly kicked with a quadrupole. We then take this solution and apply it to every
particle in the bunch so that the QFR can be calculated for coastimg§ beam. This QFR is
generalised for bunched beam where we will find that for calculating emittance from the

QFR, we require the quadrupole tune spread to be smaller than the synchrotron tune.

8 For the purposes of this paper, we define coasting beam to be beam that has no RF
structure and the relative change in momentum w.r.t. the synchronous particle Ap/p =0
so that it has no chromatic dependence.



THEORY

We set up our system with a kicker at location ¢} and the pickup at ¢,. See Figure 1.
We note that the kicker is a quadrupole kicker, which means that it will kick in both the x
and the y direction, i.e. it will focus the beam in one plane while simultaneously defocus it
in the orthogonal plane and the quadrupole pickup will see both the  and y oscillations.
Thus the final result must incorporate results from both transverse phase spaces (z, z’) and
(y,9'). For our calculations we will first work in (z,z’) and then show how we incorporate

(y,7') into the final results.

The usual transverse phase space defined by (z,z’) is transformed into a normalised

coordinates system by simply defining a new “momentum” to be
p= B2 +ax (1)

where o and 3 are the Courant-Synder parameters at that location. This means that

absent any perturbations, the locus of points in Poincaré space are circles. See Figure 2.

In normalised space, if the position of a particle is at (aj, ¢;.), then the projections

onto the axes are
X} = Qj, COS O}
(2)

. /
pr = —apsin ¢y = frxy + oy

It follows that the position of this particle at the pickup is

Tp = ay, (%) : cos(p, + dryp)

pp = —ay, (%) 2 sin(¢y, + dpyp)

(3)

where the Courant-Synder parameters at the kicker are («y., B, 7:) and at the pickup are
(ap, Bp,vp). The phase advance from the kicker to the pickup is Pkp-
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Figure 1 The azimuthal positions of the quadrupole kicker and
pickup are ¢j and ¢, respectively. The beam is travelling in the
counter-clockwise direction from the kicker to the pickup. The Cou-
rant-Synder parameters for each location are shown here.

Quadrupole Kicker

Let us suppose that we have a quadrupole kicker which is a thin lens. The transfer

matrix My is (we will assume that the quadrupole does not create any dispersion)

- () 1= 1)

where f is the focal length of the quadrupole.

Therefore, after the quadrupole kick

(5) = (o 2ar) = (o4'a) g

The perturbative kick only changes the divergence of the beam z’ and not its position x

(See Figure 3) and so from (2), we have the following two linear equations to solve for the
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x p=px + ax

(z,. z')

>
Transform fo Normalised Coordinates

Figure 2 The transformation to normalised coordinates maps the
phase ellipse to a circle.

Figure 3 A quadrupole kick changes p;. but does not change the
position zp. The small increase in p;. is easily calculated.



small changes aj — ap + Aay and ¢, — ¢ + Agy.
Az = Aay, cos ¢ — apA¢p sin g =0

(6)
Apy, = — (Aay sin ¢p + apAgy cos ) = —BragF, cos ¢y,
Solving for Aa;, and A¢;. gives
Aayj, = Brap F}. cos ¢ sin ¢y }
(7)
Ay, = By Fy cos” ¢y,

In this method, we will assume that |5, F)| < 1 and that the betatron tune @ does not

change due to this kick. Thus, the position of the particle at turn n is
a(n+1) = ag(n) + 3Bpag(n) Fy(n) sin 2¢y,(n)

(8)
S (n +1) = 61(n) + By Fi(n) cos” gy (n) + 27Q
Therefore, we can write the change in aj. and ¢;, per turn in terms of differentials
d
ﬂ = %ﬁkaka sin 2¢k
p dn (9)
7 (P8 — 2mnQ) = B F, cos” gy,

The differential equation in ¢, still requires some more manipulation. We define a new

angular variable 1, = ¢ — nfg — ¢ where 2mQ = 0¢g and ¢ = ¢;(0) so that

da .

d_rf = %ﬁkaka sin 2(vy, + nfg + dro) (10)
d

_C;ik = O1F} cos? (¢ + nbg + Pko)

which is in a better form for us to solve.

Let us put in an explicit expression for F;. (Note: we have chosen the phase of the kick
to be zero at n = 0 because ultimately in a QFR the initial phase of the kick is cancelled
out)

Fi.(n) = §F sinnf;, assuming that 0F), > 0 (11)

where 0 F}, is the amplitude of the kick satisfying (¢ = §10F), < 1) > 0. Substituting this

into (10), we have

d
_dif = %Gak sin nfy, sin 2(yy, + nbg + Pr0)
12)
diy, . (
—, = esin nby, cos? (Y +nbg + dro)
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Notice that diy./dn does not contain a; explicitly and so we will focus our attention on

1y, first.
Solving ;.

Let us assume that the frequency of the quadrupole kick is about twice the betatron
tune 6, i.e.

6, = 2(6¢) — 56y,) (13)

where 0}, /0 < 1. Thus, the rhs of di./dn in (12) can be expanded with the above and

the usual trigonometric functions to give

dyy. € . € .
—n = 5Sin 2n(0¢g — 00y,) + 1 Snr12<1/);\C +n(20g — 06) + ¢k0>

_ zflsm 2(by, + 1oy + dro) (14)

= term oscillating at 20 + term oscillating at 4(0¢g — 66;,)+

term oscillating at 06}, J
We notice that the terms which explicitly contain 26 and 46 are highly oscillatory and
on average do not contribute significantly to di;./dn (See Numerical Check I). Therefore,

we will make the approximation that

dy € .
d_nk ~ ~1 sin 2(¢, + ndby + drp) (15)

This nonlinear differential equation can be solved exactly for the initial condition 1 (0) = 0.

The solution is

R <tanﬂ45 — X)

4606, 1+ x tan 2

¢k’ = —né@k — gbko + tan_l (16)

where R = \/16(59% — €2 and x = (e — 460), tan ¢y,9)/R. There are two notes: (i) The

result of tanfl(.) is ambiguous up to an integer multiple of w. The choice of this integer
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is to make 1;.(0) = 0. (i7) 1 does not go imaginary when 169]% < €2 because
Rtan % =i Im(R) X tani [%Im(R)] =i Im(R) x i tanh [%Im(R)}
— —Im(R) x tanh EIm(R)]
and similarly for % tan %fi
For completeness, we use the above to expand (16) in powers of 66} /€ to get

(1 — tanh }lne)

Y = —noy — pro + tan ! 150
1+ (1 — —F tan ¢k0> tanh }lne

tan ¢

and so as 060, — 0 and € # 0, ¢y, in this limit is

1 — tanh %Ine

lim = — + tan }|———— 4
h k0 1 + tanh %ne

tan gzka]

and when n — oo

lim Y = —dro

00,—0, n—oo

Numerical Check 1

(17)

(18)

(20)

In this section we will perform a numerical check of the approximations that we have

derived in the previous section. We will compare the solutions of ;. obtained from the

following;:

(i) The difference equations (8) which should give the exact answer for 1.

(7) The differential equations (12) which gives a solution of v, when n is treated like

a continuous variable. (¢ is found numerically from (12) with the Runge-Kutta

method” and from Mathematica’s NDSolve[].)

(7i7) The exact solution of ¢, from (16) of the differential equation (15) where the high

frequency terms are neglected.



The parameters used for our comparisons are shown in Table 1. Note: for simplicity,

we have placed the pickup at the same location as the kicker.

Table 1. Parameters used in Numerical Check I and I1

Parameter Value Parameter Value
00 21 % 20.575 60, 21 x (1079,0.0001, 0.01)
akp 1 mm DKo m/4
Prp 0 € 0.0001

From Figure 4, we can see that the 1 approximation (case (ii7)) from (16) matches
the “exact solution” (case (i))very well in all three cases. It is interesting to note that
there are fine structures in the 06;, = 27w x 0.01 case from the difference equations (case

(7)) which are missing from the solution obtained from the differential equations (12) (case

(11)).

Solving for a;.

With the ;. approximation in hand, we can now solve for aj, from (12)

dCLk 1

dn

eay, sin 2n(6g — 60,) sin 2(y, + nbg + dio)
= 21[‘5@/@ [COS 2(né0y + Yy + o) — cos2<n(29Q —80) + Y + ¢k0>} (21)
= term oscillating at 206, + term oscillating at 46
We proceed in the same manner as in the previous section and note that on average, only
the term which is oscillating at 206, contributes to a; and so we will ignore the high

frequency term (See Numerical Check IT). It is obvious that (21) is integrable because the

rhs is separable and thus

a;, = Aexp [%Le/dn cos 2(ndby, + V1. + dro) (22)
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¥y for 80, = 27x107°
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Figure 4 These figures show how well our approximations of 1},

compare to the “exact solution” which is case (7).

It is clear that

for all three 06, cases the approximate solution matches the exact

solution very well.
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where A is a constant determined from ay(0) = azg.

A closer examination of (22) shows that the solution space of a; can be divided into
two regions because the integration of (22) depends on the relationship between the two

independent parameters ¢ and d6;.. The dividing line between these two regions is when

R=0or
00| = €/4 (23)
See Figure 5.
@
66§ < &/4 j 60, > &/4
' 66|
56, = 0 66, = /4

Figure 5 This figure shows how the aj solution space is divided.
When (60| < €/4, aj, grows exponentially and when |50;| > €/4,
aj oscillates and is bounded. When |d6;| = €/4, we find that aj, is

constant.

For the case when |06 > €/4 # 0, if we make the approximation that 1y, is constant

because its oscillations are small (see Figure 4(b) and (c)) then (22) is easily integrated

€

850,

aj = aj(exp sin 2(noby, + ¥ + dro) for |60 > €/4 (24)
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For the case when 0 < |d6;| < €¢/4, we note from (16) that

R <tanh n—f—l + X') (25)
460, 1+ x/ tanh %

ndfy, + vy, + dgo = tan~"

where R’ = /€2 — 1659% and x/ = (e — 460, tan ¢1o)/R’. And as n — oo, we find that
1
nély, + b + o = tan ! | —— (e — R')| = constant (26)
400y,
For a quick check, we see that as 00, — 0, the constant is zero, and thus ¢, = —¢¢ which
is exactly the same result as (20).

Therefore, for large n, the term cos 2(nd0 + 1, + ¢yo) in the integral of (22) is constant
and so if we make the approximation that cos 2(ndéfy, + 1. + ¢p0) is constant for all n then

(22) is easily integrated to give

1
aj = ajoexp {}lne cos 2 (tan_l {459 (e — R’)} )} for 0 < |00;| < €/4 (27)
k

There are two interesting notes: (i) (27) is independent of ¢ in this approximation
which means that in the long time limit the initial phase is not remembered. For example,
we can find particle initial conditions which do not behave this way at least for the short
term. For example when ¢ = 7/2, 00}, = 27 X 10~9 plus the conditions shown in Table 1,
aj, seems to damp for n < 2 x 10° but exponentially blows up as n — oo. (74) the argument
of the cos(.) term is always confined between +m/2 and so this term is never negative and

thus aj never damps. See Figure 6.

For the case when |§6).| = €¢/4 # 0, we have R’ = 0 and so from (25) we have

né0, + vy + oo = sign(d6y,) tan~1 (1) = sign (66, )7 /4 (28)

which means that aj = ajg Vn because cos(2 x £m/4) = 0.
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The Range of 2fon’1[(1—A2)1/2/A]

/2

37/8

2tan”"'[(1 —Az)'/z/A]

-1/2
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 6 The range of 2tan~![(e—R’)/46)] = 2tan~! [(I—AQ)%/A]
where A = 460;./e. Tt is clear that the range is confined to £ /2.

Numerical Check II

First, we use the parameters from Table 1. The exact solution comes from the difference
equations (8). The approximate solution used for 66, = 27 x 1077 come from (27),
while (24) is used for 00, = 27 x 0.0001 and 27 x 0.01. It is clear from Figure 7 that
the exponential growth of a; for 66, = 2m x 107 does not start immediately for the
“exact solution” but some time later. The difference between the approximate and “exact
solution” is rather inconsequential because both blow up exponentially at the same rate.
For the §0;. = 27 x 0.0001 and 27 x 0.01 cases, it is clear that the approximate solutions

match well to the “exact solution”.

Second, let us use the parameters from Table 2 which show what the solutions look
like when 66, is just a little smaller and larger than e/4 = 2.5 x 107°, i.e. for 86) =
(€/4—0.5x107°) =2 x 1075 and 66, = (¢/4+0.5x 107°) = 3 x 107°. From Figure 8, we
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can see that the approximate solutions have the same behaviour as the exact solutions.

Table 2. Parameters used in Numerical Check 11

Parameter Value Parameter Value
00 21 x 20.575 66, €/4+0.5x107°
aro 1 mm Pko /4
Pkp 0 € 0.0001

Image Current

It has been shown elsewhere® that the image current J from a é-function line current

I at (xp,yp) on the wall of a pickup of radius b is

I(rp, dp) b2 — rg 29)

J p—
21b b2 + 12 — 20rp cos(® — ¢p)

where 7“12, = xg + yI%, tan ¢p = yp/xp and ® = 0, 7/2, m or 37/2 are the angular positions

of the pickup plates.

For a quadrupole pickup (see Figure 9) the image current J on each plate is summed

and differenced according to the following equation to yield a quadrupole moment signal

%
_(N+S)—-(T+B) )
2= N{S+T+B
2(x2 — y2)

i ()] 2

2
lﬂ<m2—%ﬂ if 22 + 2 < b?

Vs

where the labels (N, S, T, B) for the pickup plates are from Miller!, and ® = 0 for N,

¢ =7 for S, ® =n/2 for T' and & = 37/2 for B.

Note: We can compare ¢ to the quadrupole moment .Jo of the image current which is
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log(ax/1 (m)) for 66, = 27x107°
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] [}
> o
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Figure 7 These figures show how well our approximations of aj
compare to the “exact solution”. Note that in the 00 = 27 x 1079
case, we have plotted the logarithm of aj. In this case (27) is used
for aj. The other two cases use (24) as solutions.
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log(ax/1 (m)) for 66, = ¢/4 — 0.5x107°

-45
-5.0
=
E-ss
-l
~
S
~-6.0
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70 20000 40000 60000 80000 100000 120000 140000 160000
ay for 66, = ¢/4 + 0.5 107>
0.001
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0.0008
~
£ 0.0007
N
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0.0005

0.0004 ct Solution
pproximate Solution
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0.0003
[

Figure 8 These figures show how aj, behaves when 66} < €¢/4 and
00;, > €/4. When 66, < €/4, aj, blows up exponentially while when
00, > €/4, aj, remains bounded.

extracted from (29)

2

2
e
Ty = L I cos 20 + 2%;31’ sin 20 (31)

The form of the (ZE]% — yg) term of Jy is clearly captured by ¢o.

The evolution of the transverse position of the particle at (xp,1p) when there is no
coupling between the x-x;, and y-y, planes comes from (3) and with aj either from (24)
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Top (T)

Note: pickup plates are zero width
although drawn with finite

width here.

South (S) — — North (V)

Bottom (B)

Figure 9 The quadrupole pickup consists of four zero width plates
that are summed and differenced appropriately. See (30). The dis-
tance of any plate from the centre of the beam pipe is b and the
position of the bunch is at (xp, yp).

or (27) depending on how ¢ relates to d6;.. We can write this down as

xp(n) = agy(n) <§L];Z) 2 Co8 (neQx + Ve (n) + Ppao + ¢kpx>

(32)

ﬁky

where we have added extra subscripts x and y to the notation in order to distinguish

yp(") = aky(n) <@> COS (ner + wky(n) + ¢ky0 + ¢kpy>

/

between the two planes. Substituting this into (30), we get

1 x
g = 2 {azx(n) (%) COS 2<n0Qx + Ypp(n) + dpro + d’kpm)

— a%y(n) (g—ii) cos Q(nGQy + ¢ky(n) + ¢l<:y0 + ¢l<:py> (33)

wan ()i () |
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Tune Density

260

ky

08, =—¢/4

204y

Figure 10  The kick at 0 excites the z-x) plane quadrupole tune
distribution and is far from the y-y, quadrupole tune distribution.
Note that within the region shaded in red, the kicker excites the dis-
tribution strongly. In fact the particles here will blow up exponen-

tially.

For the QFR, we are only interested in terms which are oscillating at the kicker fre-
quency 0 = 2(0g, — 60y,) = 2(0gy — 60x,) and so we will only keep terms which are
oscillating at this frequency to yield

_aj,(n) (@ox) )

©2=—""5 |7 | X
b 6kx

1 Ry <tan ”—%f — Xx)

€x +
400k, \ T 14 xp tan M

cos2 | n(fgy — 00y,) + tan !

%™ (|
b2 6k;y

cos2 | n(fgy — d0y,) + tan ™!

+ ¢kpx

Ry <tan nE - Xy)

1+thann77ﬁ )

166y,

where we have used (16).
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Let us choose the x-x;, plane to be the plane of interest. If the vertical betatron tune
Qy is far from the horizontal tune Qz, then [e; /450y, | ~ 0. (See Figure 10). Substituting
this into (24) and (16), we have ay, ~ ayy and 1y, ~ 0. Thus (34) can be simplified to
give

_ aizém (@) .

qQ = —5 —
ﬁkzx
R, <tan n—fl — Xx)

€x +
T e

cos2 | n(fgy — 00k,) + tan ! + Phepa

2
Uy0 [ Bpy
b2 ﬁky

) cos 2<n(0Qy — 00ky) + pyo + ¢kpy)

(35)
From Figure 10, we notice that when the kick frequency is within the quadrupole tune
distribution, the particles in the shaded red region will eventually blow up exponentially
in time. This means that this method will cause emittance growth which unfortunately

cannot be stopped with Landau damping.
No Landau Damping

It is clear from (27) and (35) that aj, will blow up exponentially when the kick is within
the quadrupole tune distribution. Unfortunately, the a;, solution does not have any poles
(i.e. 08y, = 0) in the denominator of (27) and thus the usual method of introducing Landau
damping by integrating over the quadrupole distribution of the bunch is not applicable
here (See, for example, Chaog). In fact, we cannot stop the exponential blow up of the

bunch with Landau damping.
Quadrupole Frequency Response

Since we cannot rely on Landau damping to stop the exponential growth of the bunch,
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technically the frequency response does not exist because it does not converge as t — oo.
To get out of this conundrum, we will instead, assume that the kick duration AT is very
short so that the blow up is minimal and we will calculate the frequency response at the

end of this time.

To get some sense of the length of AT, we suppose that the frequency resolution
required is 0.0001 frey (frev is the revolution frequency) and thus the number of turns
required for this resolution is 1/0.0001 = 10%*. We can throw in 10 averages and so the
number of turns become 10°. The relative growth of ay, is calculated by using the numbers

in Appendiz II for 0, =0 and € =4 x 1077

9 — exp (i % 107 % 4 % 10—7) ~ 1.01 (36)
aro

which means that there is a 1% growth of a; which is not insignificant. However, for
only one measurement we can assume that ay, is constant for a kick of duration 10° turns

(approximately 2.1 s for the Tevatron). With this assumption (35) becomes

2
k20 (ﬁpx)
q2 = - | X
2 52 51::5

cos2 | n(fgy — 00k,) + tan !

R, (tan n—fﬁ — Xx)

€xr + + ¢,
4605, \ " 1+ xz tan "fz b

2
_ ko

B
72 (ﬁ—zz> cos2(n(0Qy — 001y) + pyo + ¢kpy>

T~

37)

Next, if we assume that 10° turns is approximately equivalent to n — oo, then

2 \

a B

Q2 = —kgo (—px) X
b 5k:1:

1 1
cos 2 (n(HQx — 00;,.) + tan Lé%« (ew — Rf@)l + ¢kp;z:) (38)

2
kg0 ( Bpy
b2 6]62/

where we have used (26) and assumed that 0 < |00;,| < €;/4.

) cos 2 (n(GQy — 001y) + Pryo + ¢kpy)
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Many Particles

Up to this point we have been working with a single particle with initial conditions
(k05 Pha0) and (fy0, Pryo)- We will now calculate the quadrupole moment for a distribu-
tion of particles in transverse phase space. Let us assume that in normalised phase space
the distributions in (x,p,) and (y,py) are stationary. Let us suppose that 6 is within
the quadrupole tune distribution of the -z, distribution but is far away from the y-y,
distribution. See Figure 10. We notice that since 0, is far away from 260, this means
that there are hardly any particles that will oscillate at 6, and so the ay, o term of (38) is
approximately zero when integrated over the y-y, quadrupole tune density. Therefore, we

will drop this term. Thus (38) becomes

2

a I6; -

dgo = _,ggo (%) cos 2 (n(GQx — 60),) + tan ™! [
kx

where dgo is the contribution to the quadrupole moment from one particle with initial

100, R&)} + ¢kpx> (39)

conditions (a0, Prz0)-

For the QFR, we have to change our perspective to that of the kicker. Looking at
Figure 11, we see that
0 = 20 — 06 in kicker perspective
(40)
0 = 2(0g — 00),) by definition
where 060 is the new variable which brings us to the perspective of the kicker. Equating

the two equations in (40), we have §0;, = %(59@. Therefore, (39) in this new perspective

becomes

d :a_%o Bp cos ( nf), + 2tan~! ! (e—R)| +2¢ (41)
© b2 \ B & 259@ kp

We have also dropped “x” from the subscripts because it is obvious that we are only
looking at the z-z’ plane only. So, given the kicker tune, a particle which has a quadrupole
tune that is d0g away from 6, will evolve according to (41).
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Now, we have to sum in the contribution from particles which have initial condition
(arp, dro) but have different quadrupole tunes. In order to make this solvable, we will
make the approximation that only particles which have quadrupole tunes which are in the
red region of Figure 10 contribute to the quadrupole moment when the kick tune is 6.
The justification for this approximation comes from Figure 5 where it is clear that the
particles which will eventually dominate the quadrupole moment are those which satisfy

166)] < /4 or |66¢| < €/2.

0.4

0.3

t 0.2

0.1

0
k 20,

Figure 11  For each a there is an F which tells us what fraction
of the particles have that quadrupole tune. Clearly, the area under
the curve must be 1. The area shaded in red has a width of ¢ and
height F(a, 8;,) which approximates the fraction of particles which will
contribute to the quadrupole moment at quadrupole tune 6;..

We note from (20) that the tan™'[.] term in (41) is zero when d0g = 0 and so if we
make the approximation that the tan—! [.] term for all the particles in the red region is also

zero, we can sum them up to give

/4 aio Bp
d(qg> = F(ako, ek — 9) do x b—2 (ﬂ_k) cos (n@k + 2¢kp)

—e/4

(42)

2
~ eF(agg, 0r) ¥ % </§—Z) cos (nfy, + 2¢y,)

where F(a,0) is the quadrupole tune density function for particles at radius a. See Fig-

ure 11.
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d{qs) gives us the contribution to the quadrupole moment from some fraction of par-
ticles on the circle ay in (a, ¢) space and quadrupole tune 6;.. If we are given the particle
density function A in (a, ¢) space, then the “number” of particles (because everything is
normalized to 1, this “number” is really the fraction of particles) which lie on the circle
ayp is simply 2maggA(agg) dago. (A is independent of ¢ because we have assumed that the
phase space density is stationary). And thus the contribution to the quadrupole moment
from particles on circles with radii from 0 to co which have quadrupole tune 6}, is simply]L
o0 CL2 ﬁp
(q2) = /O da 2maA(a) X e]:(a,ﬁk)b—Q (ﬁ—k) cos(nby, + 2¢p,,)

2m (Bp\ [
_ Eb—g (B_Z) /0 da a3 F(a, 0;.) Aa) x cos(nby, + 20kp)

(43)

The quadrupole frequency response H is easily read off from (43) when we recall from

(10) that the quadrupole kick is esin(n#}) and so we have

: 2r (Bp\ [ 3
magnitude response |H| = 2\ 5 / da a°F(a,0;)A(a)
k 0

phase response arg(H) = %7? + 201, (01)

(44)

where we have reminded ourselves that the phase advance from the kicker to the pickup

Py is a function of the betatron tune.

Calculating the Emittance

To obtain a specific solution for the emittance from (44), we have to specify the distri-
bution A. If we assume that the distribution of particles projected onto the x-axis at the
kicker is Gaussian with standard deviation o}, then the distribution projected onto the

p-axis must also be Gaussian with standard deviation o;, because we have assumed that

Technically, the integral should be confined to within the beam pipe of radius b. However,
the limit can be taken to oo because of the approximation that we have made in (30).
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the phase space distribution is stationary. Thus, A is a bi-Gaussian

1 2 2 %)
Adrdp=—exp [_w +p2} drdp and / drdp A=1 (45)
2oy, (20%) —00

And in polar coordinates (a, ¢), we have

1 a?
Aa da d¢ = 2—2 exXp {—W] a da d¢ (46)

oy
We also know from the definition of F (see Figure 11), that

/OOO d@k J:(a, Qk) =1 (47)

and so from the magnitude response we find that when we integrate |H| over 6, we can

factor out the F dependence and thus

/0 doy [H| = b_;T (ﬁ_Z) /0 da a3 A(a) = Qo (48)

We note that we can explicitly obtain the solution to the integral in (48) with A defined

in (46), i.e.
00 4 2
/ da a®A(a) = "k (49)
0 ™
which we can then substitute into (48) to get
802 16}
=5 ()
s (50)
- eto (2
p

Finally, by using the 95% emittance formula for a Gaussian bunch we can obtain the

emittance €

6mo2  3rb2
k
e=—k=""70, 51

We summarise the approximations and assumptions which we have made to obtain the
above:
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The kick duration is short so that a; is approximately constant.

The beam is well decoupled and the y quadrupole tune is far away from the

x quadrupole tune.

Only a small region |§0p| < €/2 around 6}, in the quadrupole tune distribution

contributes to the frequency response.

The phase space distribution A is stationary and is bi-Gaussian with standard

deviation oy,.

Numerical Check IIla

We can check our results of the previous section by numerically calculating the QFR

for known beam distributions in both normalised phase space and betatron tune. From

the integral of the magnitude of the QFR we can calculate the standard deviation by using

(50) and then compare it with the input standard deviation. Here are the details of the

numerical check:

(4)

Create an M particle bi-Gaussian distribution in normalised phase space with stan-
dard deviation o} and with a Gaussian betatron tune distribution with standard

deviation o and mean GQ.
Kick the beam with a chirp. This type of kick is defined to be

chirp(n) = esinnfj, = esin <n X 2 X 27er(n)> where Q(n) = Qstart + %n

(52)
and Qgtart is the starting betatron kick tune. For the simulation, we have made
Q) increase linearly w.r.t. n, i.e. if the chirp sweeps from Qgtart to Qstop in N
turns then we can write dQ/dn = (Qstop — @start)/N. Qstart and Qstop have been
chosen so that they symmetrically enclose 6 /7. See Figure 12.
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(i)

(vi)

For each particle in the distribution, we calculate its quadrupole moment ¢ using
(30) at every turn when it is kicked with the chirp. We have placed the quadrupole
kicker and pickup at the same location so that the phase advance between the
kicker and the pickup is zero. We calculate (go) by averaging the contribution to

g2 from each of the M particles from each turn.

The QFR is calculated after N turns using

FFT (g (n))]

FFT [Chirp(n)}

QFR = (53)

where FFT].] is the N turn Fast Fourier transform. An average of N4 QFR’s is

used smooth out the QFR.

We notice that the QFR magnitude has a small DC offset which contributes to
the integral if not corrected. The source of this offset is from the division of
a small number by another small number (which should have been zero!). For
example, from Figure 12(b), for a perfect chirp, the magnitude of the chirp at
say, 0/27 = 0.12 should be zero — this means that the QFR is undefined here.
Instead, we have some erroneous response here from the “leakage” of the chirp
because clearly from the quadrupole magnitude (Figure 12(a)), it is close to zero

here (~ 1078), i.e. not kicked. To correct for this we fit the QFR to a Lorentzian

ai
+ 54
(0 — a9)? + a% “ (54)

g(0) =
where a1, ag, ag and a4 are free parameters and then ignore a4 when we perform
the integral. g(0) sans a4 is the corrected QFR magnitude. From Figure 12(c), we

can see that the fit to the QFR magnitude with ¢(#) is excellent.

The integral of the QFR magnitude is calculated by using the corrected QFR which

is discussed above. The infinite integral of a Lorentzian is

o0 ai do B ary)
/—oo (0 —ag)?+a3 " (a_3> - (55)
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(vii) o} is found by substituting in Q9 from (55) into (50). This is then compared with

the o} used to create the original distribution.

Table 3. Parameters used in Numerical Check I11a

Parameter Value Parameter Value
00 21 x 20.575 N 8192
€ 2.5 x 1074 Ny 10
b 1.5" M 20 x 103, 40 x 103
By = By, 10 m oQ 21 x (0.025, 0.05, 0.1) x 1072

The simulations that we have done can be divided into two: one set where we use
20 x 10 particles and the other 40 x 10 particles. For each o), we also vary og by
27 x (0.00025), 27 x (0.0005), and 27 x (0.001) to generate the input distribution. The
rest of the simulation parameters are shown in Table 8. We calculate o, from the QFR
of each particle distribution using the procedure outlined above. Figure 13 shows the
results. It is clear from the simulations that oy, (calculated) is linearly related to o (input)
and as expected from the theory, also independent of M, og. To show that the results
are independent of €, we calculated a few points (shown as purple x’s in Figure 13) for

e =5x10"1% g =27 x 0.00025 and M = 40 x 103.
For the parameters of Table 8, the linear fits of oy (calculated) to oj(input) are

o, (calculated) = (1.002 £ 0.006)07, (input, M = 20 x 103)
o, (calculated) = (1.000 + 0.005)0, (input, M = 40 x 103)

oy (calculated) = (0.995 & 0.004)07, (input, combined M = 20 x 10% and 40 x 10°)
(56)

These fits are extremely good and show that numerical solution agrees with the analytic

solution very well.
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Fourier Transform of the Quadrupole Moment (10 Averages)

(a)

0.0001

0.00008

0.00006

IFFT[<q2>]1

0.00004

0.00002

0.12 0.13 0.14 0.15 0.16 0.17 0.18
0/2n

Fourier Transform of the Excitation

0.001

—— Chirp (b)
——- Perfect Chirp

0.0008

ite]]

0.0006

0.0004

|FFT[exc

0.0002

0’8.12 0.13 0.14 0.15 0.16 0.17 0.18
0/2r

The Magnitude of the QFR

0.08
— |QFR| from Simulation (C)
—— Lorentzian Fit

—— Lorentzian Fit Without DC Offiset

0.02

[oX
8.12 0.13 0.14 0.15 0.16 0.17 0.18
0/2r

Figure 12 These figures show how the |QFR/| is numerically cal-
culated from the FFT[excite] and FFT[chirp]. In this example o, =
0.5 mm, o = 27 x 0.0005, ¢ = 2.5 x 1074 and M = 40 x 10°.
Note: The chirp excitation is well centred about 2Q);, when Qstart and
Qstop are not symmetric about Q. In this example Q) = 20.575,
Qstart = (20.575 — 4 x 0.002) and Qstop = 20.575 = Q.
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Comparing Calculated oy versus Input oy

—-—- 20 x 10° data
40 x 10° data )

—— both sets of data ==

X e=5x 10~* data

(5]

~

Calculated o (mm)
N W

_

2 3
Input o, (mm)

Figure 13  This graph compares the o} used to create the nor-
malised phase space and the calculated o} from the QFR. The colours
and shapes of the markers corresponds to different conditions used in

forming the initial distribution. See Table 4 for the keys needed for
deciphering these markers.

Table 4. Keys for Deciphering the Markers in Figure 13

Num. Particles Shape oQ Colour
20 x 103 O 21 x 0.0025 blue
40 x 103 & 21 x 0.005 red
— — 2w x 0.01 green

Numerical Check IIIb

We want to verify that the emittance does grow when the beam is kicked continuously.
From the Theory section, we recall that for a given maximum kick size €, and quadrupole
kick tune 0y, particles within the region [66| < €/2 around 6, will blow up exponentially.
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For example, if we use the numbers in Table 3, when € = 2.5 x 10~4, the particles in the
region £1.25x 10~% around 6, = 2 x 27 x 20.575 will blow up. Let us simulate this with the
distribution which has o}, = 0.5 mm, o = 27 X 2.5 X 10~ and 0o = 27 x 20.575 for 81920
turns (which corresponds to 1.7 s in the Tevatron). The result is shown in Figure 14(a)
which clearly shows that are particles which are greater than 40, = 2 mm from the centre

of the bunch. In fact 3% of the total particles are in the halo.

In section Numerical Check IIla, we have minimised the growth problem by using a
chirp instead of a series of pure sine waves when we measure the QFR. From the numbers
that we have used to create Figure 12, dQ;./dn = 9.8 X 10_7, and so particles which have
quadrupole tunes which are ~ e around 6, gets kicked about €/dQ;./dn = 2.5 x 107%/9.8 x
10~7 = 255 times per QFR measurement. The simulation with the same initial parameters
as the above but chirped 10 times (1.7 s in the Tevatron) does not show any growth. See
Figure 14(b). However, with 100 chirps (17 s in the Tevatron), the number of kicks on the
particles at each @)}, is about 2500 and a halo of particles (about 2% of the total particles)

is produced. See Figure 14(c).

For completeness, we have also simulated the case when € = 4x 10~ 7 which corresponds
to the value of € found in Appendixz I for a realistic quadrupole kicker. In this case,
because the kick is much smaller, the betatron tune distribution which we have used is
oQ = 27 X 1078, After 8192 x 103 turns (which corresponds to 172 s or 3 min in the

Tevatron), the normalised phase space also gets distorted. See Figure 14(d).
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Normalised Phase Space for oq = 27 x 0.00025 From Fixed Sine Wave

150 (Cl)

« Initial Distribution
= Distribution after 81920 turns
-200,

=200 -150 ~100 -50 [ 50 100 150 200
x(mm)

Normalised Phase Space for oq = 27 x 0.00025 from Chirp

2.0 .' - . . T . (b)

15 . S : rittial Distribution
-20 ' -~ = Distribution after 10 chirps

=25 2.0 15 1.0 -05 0.0 0.5 1.0 15 2.0 2.5
z(mm)

Normalised Phase Space for oq = 27 x 0.00025 from Chirp

25 . . . . (C)

. : “'Inifia) Distribution
15 . : * Distribution after 100 chirps

[ 10 20 30
x(mm)

Normalised Phase Space for oq = 27 x 1078 from Fixed Sine Wave

(d)

Pz(mm)

- * Initial Distribution -
-4 « Distribution after 8192 x 10° turns

0 1 2 3 4 s
z(mm)

Figure 14 For e = 2.5 x 10~%, for both a fixed sine wave or chirp,
the emittance will grow if applied for a sufficiently long time. For
e =4x 1077, the emittance gets distorted after 8192 x 10 turns.
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BUNCHED BEAM

Up to this point, we have been working with coasting beam. For bunched beam, we
have to include the effects of the RF which introduces synchrotron motion which affects
the azimuthal position of the bunch. If we suppose the bunch is extremely short then we

can think of it as a é-function bunch.? Its azimuthal position at any time t at the kicker is
@) = wrevt + Ags cos(Qst + ¢s0) (57)

where wrey is the angular revolution frequency of the synchronous particle, s is the

synchrotron frequency, (Ag¢s, ¢s0) are the polar coordinates of the bunch in longitudinal

phase space (kAE/E, Ap) where k = \/nhE/2n(v/c)2qV, 1 is the slip factor, h is the
harmonic number, AE/FE is the relative energy w.r.t. synchronous particle, v/c is the
relative velocity w.r.t. speed of light, ¢ is the electronic charge, V is the peak RF voltage
and Ay is the phase w.r.t. the synchronous particle. See Figure 15. Differentiating ¢y

w.r.t. t, we get

P = Wrey — QsAds Sin(Qst + ¢50>
(58)

= wrey + Awrey

The relative revolution frequency change Awrey/wrey is proportional to Ap/p. The

proportionality constant is the slip factor —n and so

Awrey _ _n%
Wrev b
Ap 1 Q . (59)
= — =+= Agssin(Qst + ¢g0)
p T) Wrev

after substituting in Awrey from (58).

If our particle has a different momentum than the synchronous particle, i.e. it has a

Some of the mathematics in this section is very similar to that used by McGinnis where
he derived the expressions required for calculating chromaticity from phase demodulation.
However, in his derivation he used ¢} = wrevt + Aggsin(Q2st + ¢50). See Ref. 10.
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S is the particle density in
longitudinal space.

o $s0)
- &@y - Ay
S
=" L by

Figure 15

This figure shows the RF bucket where the J-function

bunch resides. We have assumed that the bucket has a quadratic

potential which means that the synchrotron frequency is constant.
For example, at ¢t = 0, the bunch (coloured red) is at (A¢s, ¢so) and
when projected onto the Ay axis, the bunch is at A¢g cos ¢pg9. At any
other time, the bunch is at (Ag¢s, Qst + ¢50) in phase space.

non-zero Ap/p, then its betatron tune has to include chromatic effects i.e.

Ap

Q=CQo+&{—
£, (60

= Qo+ Agssin(Qst + ¢50)
NWrev
where () is the betatron tune of the particle with zero chromaticity.
By definition, the betatron tune @ is

_%e (61)



where éQ is the betatron frequency. Substituting (58) and (60) into (61), we have

(bQ = [QO + i > Ags sin(Qst + ¢50)1 X [Wrev — QsAgssin(Qst + ¢50)]
rev
_ B AW & 2A 2.2
= wrevQo — 25405 [ Qo sin(Qst + ¢s0) QAP sin® (st + ¢s0)
n NWrev
(62)
Integrating (62) once, we get the betatron phase
P = wrevQot + Ads <QO - %) cos(Qst + ¢s0) + ro

(63)

=0T + Ags (QO — %) cos(0sT + ds0) + o

where 7 = t/Trev, Trev is the revolution frequency of the synchronous particle, 0o = 2mQo,
0s = 2mQs/wrey, and ¢ is the betatron phase at ¢ = 0 and we have assumed that
§Q§A¢§ /Mwrev < 1. Thus from here, we can see how we can include the synchrotron term

into the single particle quadrupole moment.

The single particle quadrupole moment dgo which we have found for coasting beam
from (39), is easily modified to include the synchrotron term by using equation (63) and
0-function terms which take into account the periodicity of the d-function bunch at the

quadrupole pickup. The result is

2
dgo = % (g—:) cos 2 [(GQ —00;.)T + Ads (Qo - %) cos(0s7 + ¢s0) + Ppp| ¥

0¢
> lpp(t) — 2nm — o)
n=—00
(64)
where ( is a constant of proportionality which we will determine later, ¢) is the azimuthal
position of the bunch at the pickup (c.f. (57)) and ¢, is the azimuthal position of the
particle at ¢ = 0. We have dropped ¢y because it can be absorbed into ¢y, and the
tan—! [.] term because we will be making the same approximation that we have used to de-

rive (42). Note: dgo is dimensionless, but the dimensions of §-functions here are 1/radians,

and thus it is necessary to introduce ¢ which has dimensions of radians to compensate.
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We note that the infinite sum of §-functions is also an infinite sum of cosines
o0 1 o0
> d(ep(t) = 2nm —op0) = o= Y cosn(pp(t) — o) (65)
n=—oo n=—0o0

Note: we do not sum the cosines on the rhs because we want to preserve the negative
frequency components in Fourier space so that we can directly read off modes later on.
And so when this is substituted into (64), we get cos(.) terms multiplying cos(.) terms
which can be collapsed into sum of cos(.) terms by using the usual trigonometric formulze.

Thus dgo becomes

2 00
a p
dgoy = C47f£2 (ﬁ—i) E cos Op+ + cos Oy, — (66)

n=—oo

where

Op+ = (2n7r + 2(9@ — 50k))7 + {n + 2 (Qo — %)] A¢s cos(0sT 4 ds0) — nippo £ 20kp (67)

It is also well-known that terms of the form cos(Z sin @) and sin(Z sin ) can be expanded

in terms of Bessel functions J,(2)

o0 3\
cos(Zsinf) = Z Im(Z) cosmb
S if ZeR (68)
sin(Z sin ) = Z JIm(Z) sinmé@
m=—00 )

Therefore, (66) expanded in terms of Bessel functions is

2 o0 [e’e)
dgy = (X0 @) > (Z T (Zn+) 08(Onm T + i )+

472 \ By,
n=—00 \M=-—00
00 (69)
Z Im(Zp—) cos(Opm—1 + 1/’71—))
m=—00 )
where ¢ .
o= 2 (a0 ao
Onm+ = 2nm + 2(0@ —00;.) + mbs (70)
Ynmt = —nppo +m (%77 + (bsO) + 2¢kp
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(a)
‘d< q2nm+ >‘
0 299 0
|dq2nm+|
b
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2nm 0,
=1 +1
2 +2
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2nT 0, 2nm + 26, 0

Figure 16  These series of spectra show how |Hy,+| is calculated.
(a) shows a hypothetical F distribution at the quadrupole tune 26,.
(b) shows the spectrum of discrete lines around 2nm+26¢ described by
(69). Here, we show 0, kicking at the resonance labelled by (n, —2, +).
(c) shows [(dg2 ym+)| which is the result of “summing” over single
particle combs shown in (b) weighted by F. This means that the
width of each synchrotron line is the width of the quadrupole tune
distribution.

The interpretation of these equations is that there are an infinite number of resonances
because of synchrotron motion which is unlike the coasting beam case which has only one

resonant frequency. See Figure 16(b).

Next, we want to determine the value of (. Let us choose one of the synchro-quadrupole
resonances labelled by the quantum numbers (n, m,+) to analyse. The arguments which

we present here work equally well for (n, m—). With this choice, we have

2
a
dq2 nm+ = Fkbog (%Z) Im(Zn+) cos(Onm+T + Ynm+) (71)
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Let us consider the special case when A¢g = 0, i.e. the bunch is matched to the bucket.
With this condition, Z,,+ = 0 and thus Jy(0) = 1 and J;,,(0) = 0 for m # 0 and so there
are only resonances at m = 0. For this special case, we can apply the results shown in

Appendiz II and equate the magnitude

2
a 5
d — (k0[P 72
il = ¢ty (2] (72
to the magnitude
|dga| = o (o (73)
2=\,

from (41) for coasting beam. Hence, ( = 4.
Including F Distribution

Let us continue with the same synchro-quadrupole resonance (n,m,+) to analyse but

with A¢g no longer zero. Substituting ¢ = 4w into (71), we have

a2
dQQ,nm—l— = % <§_Z) Jm(ZnJr) COS(@nerT + wnm+) (74)

For the QFR, we will kick at resonance i.e. when Oppt = 2nm + 20 + mbs = 0. See

Figure 16(b) and thus (74) becomes

2
d92,nm+ = % <S_Z) Im(Zn+) cos(Op T + Ynm+) (75)

For many particles, we have a distribution of 6¢g’s which is described by F(a,0). Like
in the coasting beam calculation, if we assume that the particles which contribute to the

quadrupole moment are in the region +¢/2 around 6} (See Figure 11), then

CL2
d(q2.nm+) = €F (agp, 0 — 2nm — mbs) x —k0 (%) Im(Zn+) cos(0p.T + Ynm+) (76)

Therefore, the contribution from all the particles is
(@2,nm+) = 3\ 3 Im(Zn+) ; da a°F(a, 0 — 2nm — mbs).A(a) X cos(0rT + Ypm+)

By
(77)
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where Aa dad¢ is the stationary phase space density in (a, ¢) space as before.

From here, like in the coasting beam case, we can easily read off the quadrupole

magnitude response |Hypm+| for mode (n,m,+) from (77) and it is

| Hpm+| = ol (gp) | Im (Zn+) ]/ da a®>F(a,0), — 2nm — mbs)A(a) (78)

Emittance

In the prescription that we will use to extract the emittance from the QFR, we have to
put one constraint on the |H| spectrum: we want the resonances to not overlap, i.e. the tune
spread is smaller than the distance 65 between the resonances. With this constraint, we can
employ a similar trick like before. First, we select the synchro-quadrupole resonances with
the same quantum numbers n and +. Second, we integrate over 6. for each synchrotron
resonance m to get rid of the F dependence and third, we sum the square of the contribution
from each synchrotron resonance m to get a result that only depends on the phase space

distribution 4 and thus the emittance. See Figure 17.

Following the above prescription, we integrate out F for each synchrotron resonance.
We can limit the integral to some small interval A centred around ©,,,+ because the

synchrotron resonances do not overlap (See Figure 17(b)), i.e.

/ df F(a,l0 — 2nm — mbs) = / df F(a,0 — 2nm —mbs) =1 (79)
0

@nm—i-_A/Q
and therefore after integrating (78) over the small interval, we have a sequence of numbers
5p
dQ2nm+ = bQ | Jm(Zn+) | da a’ A(a) (80)
Taking the square of of each number replaces | Jim| with J,% to give (See Figure 17(c))
2 (B x 2
(@@ = |55 () [ dadda@| iz (s1)
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Figure 17 In this figure \ = %—g (%) JoC da a3 A(a). In (a) we have
the synchrotron resonances well separated in the QFR. (b) Because
the resonances are separated each resonance collapses to distinct num-
bers A\|Jy,| after F has been integrated out. (c) shows how by squaring
each number we can replace |Jy,| with J2,.

Summing these numbers over m, we have

@ =[5 (2) [Twnata@]| 3 sz

m=—0oQ

We note that the sum!!

i J2(2) =1

and thus (82) becomes independent of Z,,+ and consequently &

Q=57 () [ a3A<a>]2

Taking the square root of the above, we get

21 ([ o0
Qant = b_72r (ﬂ_:> /0 da a3 A(a)
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For a bi-Gaussian distribution A with standard deviation o}, we have

Q2+ =8 <U_bk>2 (%)

= U]% = %bZ (%) Q2.+

Therefore, the transverse emittance ¢ for a bi-Gaussian beam with standard deviation o},

(86)

is

6mor  3rb?
k
e=—"=—@9 87

Numerical Check IV

In this section, the results of the previous section are numerically verified with the
parameters shown in Table 5. We have drastically reduced o from Numerical Check Illa
in order to ensure that the synchrotron resonances do not overlap. See Figure 18(a). The
total number of turns used in the simulation has also been increased by a factor of 2 so

that we can adequately resolve the synchrotron resonances because

0
1/N =1/16384 = 6.1 x 107° ~ 29 x (ﬁ) (88)

which means that there are 29 synchrotron periods in the time domain sample.

Figure 18(a) shows the process where we fit the synchrotron lines to Lorentzians. We
apply the same fitting technique discussed in Check Illa and ignore the DC term when
we perform the integral. The other difference here is that we only integrate around each
synchrotron resonance and not +oo. Figure 18(b) shows the value of the integrals for each
resonance. We follow the algorithm for calculating o, from (81) to (85), where we square
each integral value and sum, then take the square root and finally substitute the result
into (86) to obtain oy (calculated).
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Figure 19 shows the plot of oy (calculated) versus oy (input) for the parameters shown
in Table 9 and the keys for deciphering the plot are shown in Table 6. For the og =

27 % 0.1 x 10~4 distribution and & = 2 or 5, clearly o (input) ~ oy, (calculated), in fact the

fits are
oy (calculated) = (1.05 £ 0.01)oy (input, £ = 2)
(89)
oy, (calculated) = (0.985 + 0.003)0. (input, & = 5)
It is a little poorer for & = 10
oy (calculated) = (0.973 £ 0.004)0; (input, £ = 2) (90)
Combining all the data for £ = 2, 5 and 10, we get
oy(calculated) = (1.00 £ 0.01)0y (input, £ = 2,5, 10) (91)

which is exactly what we expect.

For o = 2m x 0.4 x 10~% and € = 5 we find that oy (calculate) is approximately 20%

smaller than o (input)
oy (calculated) = (0.80 £ 0.01)oy (input, £ = 5) (92)

Part of the reason why the proportionality factor has deviated from 1 comes from the

overlap of the synchrotron sidebands. See Figure 20.

Table 5. Parameters used in Numerical Check IV for Mode (4m+)

Parameter Value Parameter Value
00 21 % 20.575 ¢ 2,5, 10
05 21 x (0.176 x 1072) N 16384
€ 2.5 x 1074 Ny 5
b 1.5 M 20 x 103
By = B 10 m o 21 x (0.1, 0.4) x 1074
Ags 2 x107% b50 0
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|QFR | After 5 Averages and Lorentzian Fits

50

30

|QFR |

Integral of Each Resonance

0.1

0.09 (b)
0.08 0.0777

0.07

+
£o.06
To.05

3
Zo.04
0.03 0.0266 0.0233
0.02

0.01 0.00?95 0.00315
|

0.0
0.146 0.148 0.15 0.152 0.154

0/2r

Figure 18 Here is the (4,m,+) quadrupole mode for ¢ = 4 mm,
og =27 x0.1x 10~% and € = 5. (a) shows the Lorentzian fits for each
resonance. (b) shows the results after integrating each Lorentzian.
The value of each integral is written on top of each spike.

Table 6. Keys for Deciphering the Markers in Figure 19

Chromaticity & Shape oQ Colour
2 A 2m x 0.1 x 1074 red
5 O 2m x 0.4 x 1074 blue
10 O — —

43



Comparing Calculated oy versus Input oy

0q = 27x(0.1x10™*) data
—— ¢= 2 fit

(5]

5:
——— 5:
— (=

~

5 fit
10 fit
2,5,10 fit

9q

_§=

Calculated o (mm)
N W

_

= 27x(0.4x107*) data _
5 fit data =

Figure 19

2 3
Input o, (mm)

deciphering these markers.
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This graph compares the o used to create the nor-
malised phase space and the calculated o} from the QFR. The colours
and shapes of the markers correspond to different chromaticities used
in forming the initial distribution. See Table 6 for the keys needed for




Overlap of Synchrotron Resonances for oq = 27rx(0.1x10_‘)

1.8

overlap =(3%

|QFR|
o

0.0
0.147 0.148 0.148 0.15 0.151 0.152 0.153
0/2r

Overlap of Synchrotron Resonances for oq = 27rx(0.4x10")

1.8

overlap = 6%

|QFR|
o

0.147 0.148 0.148 0.15 0.151 0.152 0.153
0/2r

Overlap of Synchrotron Resonances for oq = 27rx(1x10_‘)

overlap = 23%

IQFR |
5

Figure 20 We compare the |QFR| obtained from ¢ = 4 mm and
og = 27 x (0.1,0.4,1) x 10~%. The synchrotron sidebands overlap

more and more as o) increases. § =5 in all three cases.
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CONCLUSION

We have shown how the transverse emittance can be calculated from the QFR for
very short bunches when the conditions that the quadrupole tunes are well decoupled and
separated, and the quadrupole tune spread is smaller than the synchrotron tune have been
met. Although we have written down an explicit emittance formula (78) and verified it
for the bi-Gaussian in normalised transverse phase space case, we have not taken into
account the frequency response of the kicker, pickup and electronics. Thus, in practice,
unless all these frequency responses are known precisely, this method only gives relative
emittances. Furthermore, we have also shown that the emittance will grow when the
quadrupole kicker excites the beam continuously within the quadrupole tune distribution
which, unfortunately, precludes a continuous measurement of the transverse emittance.
However, we do not have actual experimental data to substantiate this claim or evidence
as to whether this method can even work. Fortunately, this problem will be remedied soon
because we have made plans to test this method out at RHIC where a quadrupole kicker

and pickup are available for machine studies.
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APPENDIX I

The focal length of a quadrupole kicker constructed using 4 striplines can be easily
calculated using Poisson.!2 Figure 21 shows the cross section of the kicker which is assumed
to be infinite in length. The parameters of the kicker used in the Poisson calculation are
shown in Table 7. For this structure, the energy per unit length calculated by Poisson
when the top and bottom plates are held at 41 V and the left and right plates are held at

—1Vis 1.3154 x 10712 J/cm. The impedance Z of each plate is given by
Z = (2cv2€)7! (93)

where ¢(= 3x 10! cm/s) is the speed of light, V(= 1 V) is the potential difference between
the plate and the wall, and £(= 1.3154 x 10712 /4) is the energy stored by 1 plate and the
wall. (Note: the “4” comes from dividing the energy among the four plates.) Putting the

numbers into (93), we find that Z = 50.7 Q. Therefore, we have a nice 50 {2 RF structure.

Table 7. Parameters of the Quadrupole Kicker

Parameter Value Parameter Value
Outer Shell Diameter qn Plate Radius 1.5"
Angle of Plate 52.5° Plate Thickness | 2 mm

Next with the above potential differences, the E-field at (0,1) cm is (0,—0.16) =
(Ez, Ey) V/cm, and thus for a stripline kicker of length ¢ = 100 c¢m, the positive angle of

this kick per volt at the Tevatron injection energy FE, = 150 GeV is

2E,0 2 x[0.16] x 100

2% 10710 rad 4
E, 150 x 109 x 107 rad/V (94)

angle per volt =

The focal length f of this quadrupole kicker as a function of voltage is thus

1 cm 1

~ angle per volt x V (2 x 10-10)y o (95)

fv
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If we assume that the kicker waveform is sinusoidal, and that the rms power P going into

the kicker is limited to 200 mW, then the peak voltage V), on each plate is

Vp = V2(P/A)Z = /2 x 200 x 10-3/4 x 50 ~ 2 V (95)

where the “4” comes from dividing the power among the four plates. Therefore, the inverse

focal length of the quadrupole kicker oscillates between (4 x 10719) cm ™! at 150 GeV.

Note: if we assume that the S-function at the kicker is approximately ;. = 10 x 102 cm,
then € = B,0F), = (10 x 10%) x (4 x 10710) = 4 x 1077, (For the examples in Numerical

Check I and II we have used e which is three orders of magnitude bigger).

1 K= 102 L= 123 1?7
= -5.98663E-03 cn

0.99452 cm
x = =9.35173E-04 Vscn
y = —-0.15664 Uscn
0.15664 U cn

?.80774E-02 U

Figure 21  Here are the equipotential lines calculated by Poisson
for a quadrupole kicker with transverse dimensions shown in Table 10.
The point marked with a “+” is approximately at (0,1) cm. The E-
field at this point is (0,—0.16) V/cm.
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APPENDIX II

Suppose we have a continuous signal f(7) and another signal described by

g(r)=f(r) Y b(r—n)

n=—oo

(96)

Let us define F'(6) and G(0) to be the Fourier transforms of f(7) and g(7) respectively.

We want to show that G(6) in Fourier space consists of an infinite number of F'(6)’s spaced

2w apart.

Let us define the Fourier transform to be
w .
F(0) = / dr f(r)eifT
— 0

Let the signal of interest be
f(7) = cosbgT

The Fourier transform of f(7) is'3

F(O) = [5(9 +00) +6(0 — eQ)]

The Fourier transform of g(7) is

oo

G(0) = Z e_mgcoanQ

n=—oo
o0

:% Z efm(GJrGQ)_i_efin(@fHQ)

n=—oo

Using the Poisson sum formula

o0 ) o0
Z e = or Z 5(0 — 2nm)

n=—oo n=—0oo

and thus

G0) = i 5(0 + 0 — 2nm) + 6(0 — O — 2nm) =

> F(6-2nm)

n=—oo n=—oo

(97)

(98)

(99)

(100)

(101)

(102)

This means that G(6) consists of an infinite number of F'(6) spaced exactly 27 apart.
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