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ABSTRACT: We will explore a method for measuring chromaticity by con-

tinuously kicking the beam transversely. This is called the continuous head-tail

method for measuring chromaticity. The complete analytic approximation in terms

of trigonometric functions is derived for zero transverse emittance beam. A few

examples are used to compare this solution with numerical ones and they are found

to be nearly identical. A simple formula for calculating chromaticity from exper-

imental data is also shown. Finally the theory is compared with experimental

data.



INTRODUCTION

Continuous chromaticity control up the ramp and through the squeeze will be vital for

operating the Large Hadron Collider (LHC). It is especially important at the beginning

of the ramp because of snapback where chromaticity swings are expected to drift at a

rate of 0.33 s−1 even with pre-programmed chromaticity correction tables. This is to be

compared to the tolerance required for nominal 7 TeV head-on collisions operations which

is ±1 unit.1 It is because of these tight tolerances that a chromaticity feedback system

has been envisioned for the LHC. However, the best method for measuring chromaticity

which has a measurement rate of about 1 Hz has not yet been pinned down. During

the 2006 Tune Feedback Review 2006, it was pointed out that there are at least five

different methods for doing this.2 One method, however, stirred up considerable interest:

the continuous head-tail measurement technique.

Figure 1 The phase difference between the head and tail with
continuous kicks was measured by M. Gasior in the SPS during the
machine studies period on 29 Sep 2006. The data were analysed by
V. Ranjbar. This showed that the head-tail phase changed when the
chromaticity was increased by 2.5 units.
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To start off the discussion, we will look first at the traditional head-tail method. In

this method, the beam is kicked once transversely and because of chromaticity, the head

and the tail de-phase differently.3 When the phase difference between the head and the tail

is measured, it can be shown that when the phases are maximally different, this difference

is linearly related to the chromaticity. However, this technique although proven to work

at both CERN and Fermilab, suffers from at least three deficiencies:

(i) It causes large emittance growth because of the large kicks.

(ii) The chromaticity cannot be continuously measured because after a small number

of kicks (< 5), there is so much beam loss that the S/N becomes really poor.

(iii) It is not compatible with the phase locked loop (PLL) tune tracking method.

The first time that we had heard of the continuous head-tail method was in early

2006.4 Some preliminary measurements at the Relativistic Heavy Ion Collider (RHIC) have

shown a phase difference between the head and the tail which changed with chromaticity.

Later work at the Super Proton Synchrotron (SPS) also measured a phase difference. See

Figure 1. However, careful examination of the data revealed that only a few data sets

showed this correlation. These results begged a theoretical understanding of whether the

phase difference was real or not. If this method can be proven to work it has the following

advantages:

(i) There is already a continuous transverse kick from the tune tracker PLL. It has

already been demonstrated at Fermilab, RHIC, and SPS that these small kicks

� 1 µm do not blow up the emittance or cause beam lifetime problems.

(ii) No extra modulations are required for the chromaticity measurement. For exam-

ple, the traditional method for measuring chromaticity requires changing the RF

frequency to change the momentum of the beam.

(iii) It is compatible with the tune tracker PLL.
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Therefore, the goal of this paper is to answer the following two questions:

(i) Is there a phase difference between the head and tail when the bunch is continuously

kicked transversely?

(ii) Is there a formula which connects chromaticity to this phase difference if (i) is

true?

We will answer these questions with theory, computer simulations and experiment.

Note that many of the following pages are filled with mathematical verbiage that can be

skipped. For the convenience of the reader, we have boxed the more important mathemat-

ical results.
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Theory
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THEORY

Most of this paper consists of our attempts at arriving at an analytic solution for the

phase difference between the head and the tail of the bunch. In order to assist the reader

in navigating this morass, we have plotted a roadmap that should assist him in this long

and arduous journey. We must point out that many of the mathematical details can be

skipped and for convenience, we have boxed the more important results of each section.

The roadmap is:

(i) We write down the ordinary differential equation (o.d.e.) which describes the dy-

namics of a single particle.

(ii) We transform to a rotating frame which simplifies the o.d.e. In this frame, we

find that it is a simple harmonic oscillator with two forcing terms: one from the

transverse kick of the tune tracker PLL and the other from the radio frequency

(RF) (which is the source of the synchrotron frequency).

(iii) The Method of Averaging is used to solve the o.d.e. for two cases: (a) when the

transverse kick is on the betatron frequency and (b) when the transverse kick is

close to the betatron frequency.

(iv) The solution in the rotating frame is transformed back to the laboratory frame.

(v) The phase difference between the head and tail is calculated.

(vi) The particles in phase space are projected down from momentum space onto po-

sition space so as to reflect what is seen from the output of the beam position

monitors.

At every step along the way, we will try to verify the approximate solutions with

numerically integrated solutions of the o.d.e. This will at least give us some confidence

that the results are (maybe) correct.
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The Differential Equation

We can write down the transverse equation of motion for a single particle as

d2X(s)
ds2 +

ω2
Q

c2
X(s) = 0 (1)

Here X is the transverse position of the particles, s is the longitudinal coordinate and ωQ

is the betatron frequency and c is the speed of light. However, if the particle resides in an

RF-bucket, we must consider its longitudinal motion inside the bucket and so the equation

of motion becomes
d2X(s, δ, z)

ds2 +
ω2
Q(δ)

c2
X(s, δ, z) = 0 (2)

Here z defines the longitudinal position relative to the centre of the RF-bucket and δ is

the relative momentum difference from the “on momentum” particle. If we expand the

betatron frequency to first order in δ we obtain

ωQ(δ) = ω0Q+ ξω0δ (3)

where ω0 is the revolution frequency, Q = ωQ/ω0 is the betatron tune and ξ is the chro-

maticity. Therefore (2) becomes

d2X(s, δ, z)
ds2 + ω2

0

(
Q+ ξδ

)2
X(s, δ, z) = 0 (4)

We will approximate the longitudinal motion inside the RF-bucket with

δ(s) = −ωs
ηc
r sin

(ωss
c

+ φ
)

z(s) = r cos
(ωss
c

+ φ
)





(5)

where ωs is the synchrotron frequency, (r, φ) is position of the particle at s/c = 0 and η is

the slip factor. See Figure 2. It is clear from this figure, that we can write down a linear

transformation which maps (z(0), δ(0)) ≡ (z0, δ0) to (z(s), δ(s))
(
z(s)
δ(s)

)
=

(
cos
(ωss
c

) ηc
ωs

sin
(ωss
c

)

−ωsηc sin
(ωss
c

)
cos
(ωss
c

)
)(

z0
δ0

)
(6)
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Figure 2 The δ-axis is in units of −ωs/ηc so that the particle at
(z0, δ0) rotates along a circle at frequency ωs. In the (z,X) plane,
the particle moves along a path that satisfies the o.d.e. (4). After
transforming to a rotating frame, the particle oscillates along the line
z0 and satisfies the o.d.e. (7). The 3-D representation is drawn in
Figure 8.

We can also think of the map given by (6) as a frame that is rotating at the synchrotron
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frequency. Thus in this frame, (4) becomes

d2x(s, δ, z)
ds2 + ω2

0

[
Q+ ξ

(
δ0 cos

(ωss
c

)
− ωsτ0

η
sin
(ωss
c

))]2
x(s, δ, z) = 0 (7)

where τ0 = z0/c and we have mapped X → x to remind us that we are in the rotating

frame. Next, let us change variables to use turns n rather than s, i.e.

n =
s

2πR
⇒ dn

ds
=

1
2πR

(8)

where R is the radius of the accelerator. In this variable, (7) becomes

d2x

dn2 +
[
2πQ+ 2πξ

(
δ0 cos(2πQsn)− ωsτ0

η
sin(2πQsn)

)]2
x = 0 (9)

where s/c = 2πn/ω0, Qs = ωs/ω0 is the synchrotron tune.

If the weak sinusoidal kick from the tune tracker PLL is given by ελ cos(2πQkn) where

ε� 1, Qk is the frequency of the kick in tune units and λ = 1 has the same dimensions as

x to keep the dimensions of the lhs and rhs of the o.d.e. correct, then (9) with this force is

ẍ+
[
2πQ+ 2πξ

(
δ0 cos(2πQsn)− ωsτ0

η
sin(2πQsn)

)]2
x = ελ cos 2πQkn (10)

where d
dn = “·”.

Let us define the following new variables so that it is easier to lug (10) around

θQ ≡ 2πQ θs ≡ 2πQs θk ≡ 2πQk
ν ≡ 2πξδ0 � 1 µ ≡ −2πξωsτ0/η � 1

}
(11)

Thus (10) becomes

ẍ+
(
θQ + ν cosnθs + µ sinnθs

)2
x = ẍ+

(
θ2
Q + 2θQν cosnθs + 2θQµ sinnθs+

2νµ sinnθs cosnθs + ν2 cos2 nθs + µ2 sin2 nθs+
)
x

≡ ẍ+W (n)2x = ελ cosnθk




(12)

It is clear that (12) is Hill’s equation with an external periodic forcing because W (n) =

W (n+ 2π/θs). Directly solving (12) to obtain analytic answers is beyond our capabilities.
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Instead, we will solve (12) approximately by using the Averaging Method. However, we

have to be careful with the averaging method because according to Arnold5, the principle

behind the averaging method “is neither a theorem, an axiom nor a definition, but rather

a physical proposition, i.e., a vaguely formulated and, strictly speaking, untrue assertion.

Such assertions are often fruitful sources of mathematical theorems.” Thus to check that

our approximate solutions are close to the real ones, we first assume that the solution

obtained by numerically integrating (12) does indeed give us the actual solutions. We will

then show that the approximations obtained from the averaging method are really close

to the numerical solutions.

Single Particle Solution

To solve (12), we transfer W (n)2x to the rhs

ẍ = ελ cosnθk −W (n)2x

≡ εg(n; θ) + f(n, x; θQ, θs, ν, µ), x(0) = x0, ẋ(0) = ẋ0



 (13)

Let us write (13) as a system of two first order differential equations:

ẋ = u

u̇ = εg(n; θk) + f(n, x; θQ, θs, ν, µ)



 (14)

with x(0) = x0 and ẋ(0) = ẋ0 ≡ u0 = u(0). These equations can be written as one vector

equation

ẋ = εg(n; θk) + f(n, x; θQ, θs, ν, µ), x(0) = x0 (15)

where x, f and g are vectors in R2 with the entries of each of these vectors coming from

(14). We want to reformulate (15) into the standard form for averaging. See Sanders6 or

(67) in Appendix I . In order to do so, let us consider the unperturbed problem, i.e. when

ε = 0,

ẏ = f(n, y; θQ, θs, ν, µ), y(0) = x0 (16)
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In general, (16) cannot be solved in terms of elementary functions. However, if we assume

that we can either do it exactly or approximately, then we can apply the Method of Varia-

tion of Parameters which tells us to treat the constants calculated from initial conditions

as functions of n, i.e. if the notation for the homogeneous solution which includes the initial

conditions is y(n,x0) then

y = y(n, z), y(0, z) = z, z ∈ R2 (17)

where z is a function of n. To solve the o.d.e. (15) for x given y, the method of variation

of parameters tells us to let

x = y(n,z) (18)

and then substitute it into (15), to get

ẏ =
∂y

∂n
+
∂y

∂z
ż = εg(n; θk) + f(n, y; θQ, θs, ν, µ), (19)

But ∂y/∂n is the solution of the unperturbed problem, and so (19) becomes

ż = ε

[
∂y(n, z)
∂z

]−1
g(n; θ) (20)

if
[
∂y(n,z)
∂z

]−1
is nonsingular.

If (20) can be solved for z, then we have the solution for x because x = y(n, z).

However, (20) is usually not easily solved, but fortunately it is in the standard form for

applying the averaging method which allows us to find an approximate z solution. Thus

we start our solution of (13) by calculating the homogeneous solution in the next section.

Homogeneous Solution

The original o.d.e. (12) with the rhs set to zero is

ÿh +W (n)2yh = 0 (21)
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where we have introduced yh to be the solution to this equation. A crude solution that is

surprisingly accurate is

yh = φ0e
±i
∫
W (n) dn (22)

where φ0 ∈ C is a constant determined from initial conditions. Let us just look at the

phase term ∫
W (n) dn =

∫ (
θQ + ν cosnθs + µ sinnθs

)
dn

= nθQ +
1
θs

(
ν sinnθs − µ cosnθs

)

= nθQ +
ρ

θs
sin(nθs − ϕ)





(23)

where
ρ =

√
ν2 + µ2

ϕ = tan−1 µ

ν





(24)

Therefore, the homogeneous solution is

yh = φ01 cos
[
nθQ +

ρ

θs
sin(nθs − ϕ)

]
+ φ02 sin

[
nθQ +

ρ

θs
sin(nθs − ϕ)

]

≡ φ01y1(n) + φ02y2(n)





(25)

where φ01, φ02 ∈ R are constants derived from initial conditions.

Variation of Parameters

Let us continue with the prescription for deriving the differential equations which

satisfy the Averaging Theorem. The method of variation of parameters is the next step.

The two relevant equations for this method are

yh = φ01y1 + φ02y2

ẏh = φ01ẏ1 + φ02ẏ2

}
(26)

When we replace φ01 by z1(n) and φ02 by z2(n), we get

y = z1(n)y1(n) + z2(n)y2(n)

ẏ = z1(n)ẏ1(n) + z2(n)ẏ2(n)



 (27)

12



We can write down the matrix ∂y
∂z immediately by reading off the coefficients of z1 and z2

from (27)
∂y

∂z
=
(
y1 y2
ẏ1 ẏ2

)
(28)

The matrix equation which relates ż to g comes from (20)
(
ż1
ż2

)
= ε

(
y1 y2
ẏ1 ẏ2

)−1(
0
g

)
(29)

which is exactly the form required for averaging. Multiplying out (29) we get

ż1 = − εy2g

y1ẏ2 − ẏ1y2

ż2 =
εy1g

y1ẏ2 − ẏ1y2





(30)

The expression y1ẏ2 − ẏ1y2 is called the Wronskian W. Substituting in y1 and y2 from

(25) and doing the respective differentials, we find that

W = y1ẏ2 − ẏ1y2

= ρ cos(nθs − ϕ) + θQ



 (31)

Therefore, (30) with the rhs expanded is

ż1 = −ελ cosnθk
θQ

×
sin
[
nθQ + ρ

θs
sin(nθs − ϕ)

]
[
1 + ρ

θQ
cos(nθs − ϕ)

]

≈ −ελ cosnθk
θQ

× sin
[
nθQ +

ρ

θs
sin(nθs − ϕ)

]
×
[
1− ρ

θQ
cos(nθs − ϕ)

]

ż2 = +
ελ cosnθk

θQ
×

cos
[
nθQ + ρ

θs
cos(nθs − ϕ)

]
[
1 + ρ

θQ
cos(nθs − ϕ)

]

≈ +
ελ cosnθk

θQ
× cos

[
nθQ +

ρ

θs
sin(nθs − ϕ)

]
×
[
1− ρ

θQ
cos(nθs − ϕ)

]





(32)

if we assume that ρ/θQ � 1.

Averaging

Notice that the rhs of (32) is not periodic but almost periodic because of the three tunes

θk, θQ and θs. Therefore, we cannot use the usual Averaging Theorems but have to use
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the Nonlinear Averaging Theorems described in Appendix I . The definition of averaging

of a function f(t1, t2, . . .) w.r.t. t1 in this theorem is

f̄(t2, t3, . . .) ≡ lim
T→∞

1
T

∫ T

0

∞∑

n=0
fn(t1, t2, . . .)eiωnt1 dt1 (33)

Therefore, in this context, nθQ and nθs are treated as independent variables when we

perform averaging.

Furthermore, we will find solutions for only two cases because the tune tracker PLL is

always assumed to lock onto the betatron tune θk = θQ or close to it i.e. |θk − θQ| � 1.

Case I: θk = θQ

For the case, when the tune tracker PLL is exactly on the betatron tune, θk = θQ,

when we average the rhs of (32) over nθQ, we get

˙̄z1 = − ελ

2θQ
sin
[
ρ

θs
sin(nθs − ϕ)

]
×
[
1− ρ

θQ
cos(nθs − ϕ)

]

˙̄z2 =
ελ

2θQ
cos
[
ρ

θs
sin(nθs − ϕ)

]
×
[
1− ρ

θQ
cos(nθs − ϕ)

]





(34)

which we still cannot easily integrate. Let’s go one step further and assume that ρ/θs � 1,

so that the rhs of both ˙̄z1 and ˙̄z2 become linearised

˙̄z1 = − ελ

2θQ
×
[
ρ

θs
sin(nθs − ϕ)

]
×
[
1− ρ

θQ
cos(nθs − ϕ)

]

≈ − ελρ

2θQθs
sin(nθs − ϕ)

˙̄z2 =
ελ

2θQ
×
[
1− ρ

θQ
cos(nθs − ϕ)

]

≈ ελ

2θQ





(35)

where we have used (ρ/θQ)2 ≈ 0 and ρ/θ2
Q ≈ 0. Finally, we can integrate (35) to get

z̄1 =
ελρ

2θQθ2
s

cos(nθs − ϕ)

z̄2 =
ελ

2θQ
n





(36)
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Therefore, the particular integral from (27) is

yp = z̄1y1 + z̄2y2

=
ελρ

2θQθ2
s

cos(nθs − ϕ)× cos
[
nθQ +

ρ

θs
sin(nθs − ϕ)

]
+

ελ

2θQ
n sin

[
nθQ +

ρ

θs
sin(nθs − ϕ)

]





(37)

For large n, the the secular term (i.e. the term which grows with n) dominates and so

y =
ελ

2θQ
n sin

[
nθQ +

ρ

θs
sin(nθs − ϕ)

]
(38)

In summary, the complete solution to (12) when θk = θQ is

y = yh + yp

=

[
φ01 +

ελρ

2θQθ2
s

cos(nθs − ϕ)

]
× cos

[
nθQ +

ρ

θs
sin(nθs − ϕ)

]
+

[
φ02 +

ελ

2θQ
n

]
× sin

[
nθQ +

ρ

θs
sin(nθs − ϕ)

]





(39)

Numerical Check

We will compare the solution obtained by the averaging method to the numerically

integrated solution of the o.d.e. (10). The FORTRAN o.d.e. solver which we have used is

written by R.W. Brankin et al and it is based on Runge-Kutta formulæ.7 The numerical

parameters used for comparing the two methods are shown in Table 1.

15



Table 1. Parameters used in the simulation

Parameter Value Parameter Value

Q 20.575 Qs 1.77× 10−3

ξ 3 δ0 10−4

ωsτ0 7.959× 10−7 η 0.0028

ε 0.01 - -
y(0) 0.01 ẏ(0) 0

The two solutions when plotted on top of each other and the relative error between the

two solutions are shown in Figure 3. The zoomed in view shows that these two solutions

are very close. The calculation of the relative errors between the two solutions require cuts

because points close to zero crossings produce large relative errors but the absolute errors

remain small. Any points between y = ±0.25× 10−2 are not used to calculate the relative

error but immediately set to zero. From here we can can see that the averaging method

produces a solution that is about 5% larger than the Runge-Kutta solution. Even with

the cuts, there are sharp spikes that show that there are relative errors of about 25%.

Case II: |θk − θQ| � 1

Suppose the tune tracker PLL locks close to but not right on θQ, i.e. |θk − θQ| � 1.

Let us write

θk = θQ + δθQ (40)
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Figure 3 This compares the two solutions obtained by using the
averaging method and the Runge-Kutta solver. The relative error
between the two solutions is < 25%. See text.
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When we substitute this into (32) we get

ż1 = − ελ
θQ

(
cosnθQ cosnδθQ − sinnθQ sinnδθQ

)
×

(
sinnθQ cos

[
ρ

θs
sin(nθs − ϕ)

]
+ cosnθQ sin

[
ρ

θs
sin(nθs − ϕ)

])

ż2 = +
ελ

θQ

(
cosnθQ cosnδθQ − sinnθQ sinnδθQ

)
×

(
cosnθQ cos

[
ρ

θs
sin(nθs − ϕ)

]
− sinnθQ sin

[
ρ

θs
sin(nθs − ϕ)

])





(41)

if ρ/θ2
Q ≈ 0. When we average over nθQ as before, we get

˙̄z1 =
ελ

2θQ

[
sinnδθQ −

ρ

θs
cosnδθQ sin(nθs − ϕ)

]

˙̄z2 =
ελ

2θQ

[
cosnδθQ +

ρ

θs
sinnδθQ sin(nθs − ϕ)

]





(42)

if we assume that ρ/θs � 1. (42) is actually integrable and so we get

z̄1 = − ελ

2θQ

(
cosnδθQ
δθQ

−

ρ

θs(δθ2
Q − θ2

s)

[
θs cosnδθQ cos(nθs − ϕ) + δθQ sinnδθQ sin(nθs − ϕ)

])

z̄2 = +
ελ

2θQ

(
sinnδθQ
δθQ

−

ρ

θs(δθ2
Q − θ2

s)

[
θs sinnδθQ cos(nθs − ϕ)− δθQ cosnδθQ sin(nθs − ϕ)

])




(43)

As expected, as δθQ → 0, cosnδθQ/δθQ → ∞ in the z̄1 equation. This singularity will

be removed when the initial conditions are included in the full solution. See Chao8. The

secular term arises when δθQ → 0, sinnδθQ/δθQ → n, which is exactly the secular term

of (37). Furthermore, we notice that there are extra singularities which occur when δθQ =

±θs.
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Carrying on, we can calculate the particular integral from (27)

yp = z̄1y1 + z̄2y2

=
ελ

2θQ

{
−cosnδθQ

δθQ
cos
[
nθQ +

ρ

θs
sin(nθs − ϕ)

]
+

sinnδθQ
δθQ

sin
[
nθQ +

ρ

θs
sin(nθs − ϕ)

]
+

ρ

2θs

(
1

δθQ + θs
cos
[
n(θQ + δθQ) +

ρ

θs
sin(nθs − ϕ) + (nθs − ϕ)

]
−

1
δθQ − θs

cos
[
n(θQ + δθQ) +

ρ

θs
sin(nθs − ϕ)− (nθs − ϕ)

])}





(44)

which when we take δθQ → 0, we see that the result is the same as (37) except for the

singularity when cosnδθQ/δθQ when δθQ → 0.

Therefore, the complete solution to (10) when θk − θQ = δθQ is

y = yh + yp

=
(
φ01 −

ελ cosnδθQ
2θQδθQ

)
cos
[
nθQ +

ρ

θs
sin(nθs − ϕ)

]
+

(
φ02 +

ελ sinnδθQ
2θQδθQ

)
sin
[
nθQ +

ρ

θs
sin(nθs − ϕ)

]
+

ελρ

4θQθs

(
1

δθQ + θs
cos
[
n(θQ + δθQ) +

ρ

θs
sin(nθs − ϕ) + (nθs − ϕ)

]
−

1
δθQ − θs

cos
[
n(θQ + δθQ) +

ρ

θs
sin(nθs − ϕ)− (nθs − ϕ)

])





(45)

If we put in the initial conditions y(0) = 0 and ẏ(0) = 0, we see that

y =
ελ

2θQδθQ
(1− cosnδθQ) cos

[
nθQ +

ρ

θs
sin(nθs − ϕ)

]
+

ελ

2θQδθQ
sinnδθQ sin

[
nθQ +

ρ

θs
sin(nθs − ϕ)

]
+ . . .





(46)

And as we have promised earlier, the initial conditions have taken care of the singularity at

cosnδθQ/δθQ, because as δθQ → 0, (1− cosnδθQ)/δθQ → 0 and is therefore well behaved.

(Note: other initial conditions will also take care of this singularity.)
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Numerical Check

Like before, we will compare the analytic solutions (45) with the solution which we

calculate using the Runge-Kutta method. The parameters of the calculations are for

ωsτ0 = +7.959 × 10−7, δθQ = −0.01 and those of Table 1. We chose this value of δθQ

because |δQ| = |δθQ|/2π ≈ 0.0016 is approximately the minimum accuracy that is required

for the tune tracker PLL. With these values, Figure 4 compares the two methods. It is

obvious that the two solutions are nearly identical which confirms the validity of the

averaging method.

Laboratory Frame

All the calculations that we have done so far are in the frame that follows the single

particle. In the laboratory frame, we measure the transverse position of the beam once a

turn at the longitudinal positions ±τB while we continuously kick the beam. To arrive at

an analytic solution for this paper, we will make the assumption that the beam is matched

to the RF bucket, i.e. in the (τ, δ) plane the particle distribution is stationary9. This means

that the particles are dense on the contour rB/c. See Figure 5. The series of pictures here

give us a clue for how to calculate the transverse position of the beam at (rB/c, φB) for

all n. Note that the labels (τ̂B, δ̂B), (τ̂1, δ̂2), . . ., are the initial conditions at n = 0 which

are used to calculate φ01 and φ02 of (39) or (45). Notice that we have used the symbol

“ˆ” to denote initial conditions at n = 0. At time n = 0, the point labeled (τ̂B , δ̂B) is at

the observation point. The point (τ̂1, δ̂1) is at an angle θs away from (τ̂B, δ̂B). And so at

time n = 1, (τ̂B, δ̂B) rotates counter-clockwise away by θs and the point (τ̂1, δ̂1) now lands

at the observation point. At n = 2, the point (τ̂1, δ̂1) rotates away by θs and the point

(τ̂2, δ̂2) lands at the observation point. This continues ad infinitum.
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Figure 4 The solution calculated from (45) and Runge-Kutta is
shown here. We only show half the number of points for the averaged
solution so that the Runge-Kutta solution can be seen. The zoomed
in view at an arbitrarily chosen turn shows that the two methods give
nearly identical solutions.

Therefore, at the observation point, the transverse amplitude ŶB(n) (the symbols are

here to remind us that the amplitude is measured at point (rB/c, φB) and uses initial
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Figure 5 These series of pictures tell us how to calculate the trans-
verse position of the beam at (rB/c, φB). The angle between each
vector is θs. Note that the labels (τ̂B, δ̂B), (τ̂1, δ̂2), . . ., are the initial
conditions at n = 0 which are used to calculate φ01 and φ02 of (39)
or (45). Note that the circle rB/c contains a dense set of points. We
only highlight the points which are relevant for the calculation. Note
also that φB − nθs = ϕ̂B + nθs because ϕ̂B = π/2− φB.
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conditions (τ̂B , δ̂B), (τ̂1, δ̂2), . . .) is simply

ŶB(n) =





y(0) if n = 0 with initial conditions (τ̂B, δ̂B)

y(1) if n = 1 with initial conditions (τ̂1, δ̂1)

y(2) if n = 2 with initial conditions (τ̂2, δ̂2)

...
...

...

(47)

where y(n) comes from (39) or (45). For the remainder of this paper, we will use the y(n)

from (45) which is from the section Case II: |θk − θQ| � 1 .

It will be more convenient if we write the initial conditions (τ̂n, δ̂n) in terms of (ρ̂B, ϕ̂B).

It is easy to show from (24) and µ and ν from (11). that

τ̂n =





+
ηρ̂B

2πξωs
sin(nθs + ϕ̂B) if νB, µB > 0 or νB < 0, µB > 0

− ηρ̂B
2πξωs

sin(nθs + ϕ̂B) if νB, µB < 0 or νB > 0, µB < 0

δ̂n =





− ρ̂B
2πξ

cos(nθs + ϕ̂B) if νB, µB > 0 or νB < 0, µB > 0

+
ρ̂B
2πξ

cos(nθs + ϕ̂B) if νB, µB < 0 or νB > 0, µB < 0





(48)

and so with the above relationship, we can write ŶB(n) as

ŶB(n) =





y(0) if n = 0 with initial conditions (ρ̂B , ϕ̂B)

y(1) if n = 1 with initial conditions (ρ̂B , θs + ϕ̂B)

y(2) if n = 2 with initial conditions (ρ̂B , 2θs + ϕ̂B)

...
...

...

(49)

ŶB for Zero Transverse Emittance Case

For the zero transverse emittance case with y(0) = ẏ(0) = 0, we can show that φ01
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and φ02 in terms of ρ and ϕ are†

φ01(ρ, ϕ) = ελ

{
− 1

4θQ(θQ + ρ cosϕ)
cos
(

2ρ
θs

sinϕ
)

+

1
4θQθs(θQ + ρ cosϕ)

[
θs − ρ sinϕ sin

(
2ρ
θs

sinϕ
)]

+
1

2δθQθQ
+

ρ cosϕ
2(δθ2

Q − θ2
s)(θQ + ρ cosϕ)

(
1 +

ρ cosϕ
θQ

)}

φ02(ρ, ϕ) = ελ

{
1

4θQ(θQ + ρ cosϕ)
sin
(

2ρ
θs

sinϕ
)
−

ρ sinϕ
2θQθs


cos2

(
ρ
θs

sinϕ
)

θQ + ρ cosϕ
+

δθQ

δθ2
Q − θ2

s











(50)

and so from (49), ŶB(n) is easily derived by mapping ρ → ρ̂B and ϕ → (nθs + ϕ̂B) of y.

Thus the analytic solution for the transverse amplitude at (ρ̂B , ϕ̂B) for all n is

ŶB(n) =
(
φ01(ρ̂B, nθs + ϕ̂B)− ελ cosnδθQ

2θQδθQ

)
cos
[
nθQ −

ρ̂B
θs

sin ϕ̂B

]
−

(
φ02(ρ̂B, nθs + ϕ̂B) +

ελ sinnδθQ
2θQδθQ

)
sin
[
nθQ −

ρ̂B
θs

sin ϕ̂B

]
+

ελρ̂B
4θQθs

(
1

δθQ + θs
cos
[
n(θQ + δθQ)− ρ̂B

θs
sin ϕ̂B − ϕ̂B

]
−

1
δθQ − θs

cos
[
n(θQ + δθQ)− ρ̂B

θs
sin ϕ̂B + ϕ̂B

])





(51)

It is interesting to note that the time dependent synchrotron term nθs is now embedded in

φ01 and φ02 and removed from the terms cosnθQ, sinnθQ, cosn(θQ+ δθQ) and sinn(θQ+

δθQ). The reason why there can be any phase difference between the head and the tail

originates from here. This means that if we had ignored the initial conditions, we would

have obtained an incorrect solution.

† These algebraic solutions have been verified with Mathematica.
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Numerical Check

We use the same parameters shown in Table 1 to verify (51). We will examine the

solution at two different observation points at (τ̂B,±δ̂B) = (1 ns,±10−4). The comparison

between the Runge-Kutta solution and (51) is shown in Figures 6 and 7. Again, the analytic

solution is very close to the numeric solution.

Changing Perspective

To calculate the phase difference between the head and tail, we will first change per-

spective from that of a fixed betatron tune θQ and variable kick tune θk to that of a fixed

θk and variable θQ because ultimately in our experiment which will be discussed in the

section Experiment or when we use the tune tracker PLL, we measure phase w.r.t. the

frequency of the kick and not the betatron frequency. In this perspective, we have

θQ = θk − δθQ from (40) (52)

and thus ŶB(n) is transformed to this perspective with a trivial change of variables, where

we just replace θQ with θk − δθQ to become

Ŷk,B(n) =
(
φ01(ρ̂B, nθs + ϕ̂B)− ελ cosnδθQ)

2(θk − δθQ)δθQ

)
cos
[
n(θk − δθQ)− ρ̂B

θs
sin ϕ̂B

]
−

(
φ02(ρ̂B, nθs + ϕ̂B) +

ελ sinnδθQ
2(θk − δθQ)δθQ

)
sin
[
n(θk − δθQ)− ρ̂B

θs
sin ϕ̂B

]
+

ελρ̂B
4(θk − δθQ)θs

(
1

δθQ + θs
cos
[
nθk −

ρ̂B
θs

sin ϕ̂B − ϕ̂B
]
−

1
δθQ − θs

cos
[
nθk −

ρ̂B
θs

sin ϕ̂B + ϕ̂B

])

(53)

where we have added k to the subscript of Ŷk,B(n) to remind ourselves that we are in the

perspective of the kicker and the new functions φk,01() and φk,02() are φ01() and φ02()
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Figure 6 The solution calculated from (51) and Runge-Kutta for
the observation point (τ̂B,+δ̂B) = (1 ns,+10−4) is shown here. The
zoomed in view at an arbitrarily chosen turn shows that the two
methods give nearly identical solutions.
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Figure 7 The solution calculated from (51) and Runge-Kutta for
the observation point (τ̂B,−δ̂B) = (1 ns,−10−4) is shown here. And
like Figure 6, the two methods give nearly identical solutions.
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with θQ → θk − δθQ i.e.

φk,01(ρ̂B, nθs + ϕ̂B) = ελ



−

cos
(

2ρ̂B
θs

sin(nθs + ϕ̂B)
)

4(θk − δθQ)(θk − δθQ + ρ̂B cos(nθs + ϕ̂B))
+

[
θs − ρ̂B sin(nθs + ϕ̂B) sin

(
2ρ̂B
θs

sin(nθs + ϕ̂B)
)]

4θs(θk − δθQ)(θk − δθQ + ρ̂B cos(nθs + ϕ̂B))
+

1
2(θk − δθQ)δθQ

+

ρ̂B cos(nθs + ϕ̂B)
(

1 + ρ̂B cos(nθs+ϕ̂B)
θk−δθQ

)

2(δθ2
Q − θ2

s)(θk − δθQ + ρ̂B cos(nθs + ϕ̂B))





φk,02(ρ̂B, nθs + ϕ̂B) = ελ





sin
(

2ρ̂B
θs

sin(nθs + ϕ̂B)
)

4(θk − δθQ)(θk − δθQ + ρ̂B cos(nθs + ϕ̂B))
−

ρ̂B sin(nθs + ϕ̂B)
2(θk − δθQ)θs


 cos2

(
ρ̂B
θs

sin(nθs + ϕ̂B)
)

θk − δθQ + ρ̂B cos(nθs + ϕ̂B)
+

δθQ

δθ2
Q − θ2

s







(54)

When we look at (53) and (54) — which are rather complicated — very carefully, we

can extract out two different cases that are relevant to us. The first is when |δθQ| � θs � 1

or δθQ = 0, i.e. very close to the betatron tune but not on a synchrotron line or on the

betatron tune and the second case is when |δθQ| ≈ θs � 1 when we are kicking close or on

a synchrotron line. The second case is important because for the tune tracker PLL, there

is always a possiblity that it locks to the closest synchrotron tune w.r.t. the betatron tune

and not on the betatron tune itself.

Case A: |δθQ| � θs � 1 or δθQ = 0

In this case, the dominant terms in (53) are those with coefficients which contain 1/δθQ.
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Picking these out, we have

ŶδθQ,k,B(n) =
ελ

2(θk − δθQ)

(
1− cosnδθQ

δθQ
cos
[
n(θk − δθQ)− ρ̂B

θs
sin ϕ̂B

]
−

sinnδθQ
δθQ

sin
[
n(θk − δθQ)− ρ̂B

θs
sin ϕ̂B

])

= − ελ

2(θk − δθQ)δθQ

(
cos
[
n(θk − δθQ)− nδθQ −

ρ̂B
θs

sin ϕ̂B

]
−

cos
[
n(θk − δθQ)− ρ̂B

θs
sin ϕ̂B

])





(55)

and the string of Ŷ subscripts has increased with the addition of δθQ which reminds us

that we are only looking at terms which contain 1/δθQ.

To obtain an averaged transverse position X̂, we have to integrate Ŷ over δ.† See

Figure 8. Note that the δ distribution is time independent because we have assumed that

the (τ, δ) distribution is matched to the bucket and thus stationary. Let σ(τB, δ) ≡ σ(δ)

be the density of particles in the (τ, δ) plane which is normalized, i.e.

∫ ∞
−∞

dδ σ(δ) = 1 (56)

Therefore, the fraction of particles in the small segment δ is σ dδ which gives us the

weight for calculating the average X̂, i.e.

X̂θk,k,B =
∫ ∞
−∞

dδ σ(δ)Ŷθk,k,B (57)

Before we can perform the integral of Ŷθk,k,B(n) over δ, we have to find an expression

for ρ
θs

sinϕ in terms of τ and δ. Figure 9 shows us how to do this

sin
(

tan−1 θ
)

=
ωs|τ |/η√(
ωsτ
η

)2
+ δ2

if ν, µ > 0 (58)

† In general, this integral is 2-dimensional with σ(τB, δ,X), however, because of the initial
condition that y(0) = ẏ(0) = 0, we have a sheet in the (τ, δ,X) space and not a volume.
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Figure 8 The blue curve represents the bunch signal at a beam
position monitor. The point (τB , X̂k(ξ, τB, n)) comes from integrating
Ŷ over all the particles in the red line and thus gives us an averaged
position X̂ at τB. The magenta surface is the distribution of particles
in (τ, δ,X) space. We have a sheet because of the initial conditions.
The green line is the intersection between the plane at constant τB
and the magenta surface.

And so we can produce a cheat sheet for ρ
θs

sinϕ for different signs of τ and δ from ρ

and ϕ from (24) and µ and ν from (11).

ρ

θs
sinϕ =





−ξω0|τ |
η

if τ > 0 and δ > 0

−ξω0|τ |
η

if τ > 0 and δ < 0

+
ξω0|τ |
η

if τ < 0 and δ > 0

+
ξω0|τ |
η

if τ < 0 and δ < 0

(59)
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Figure 9 This figure shows how we derive (58) for ν, µ > 0. The
sign of sin θ must be carefully considered by examining each possible
sign of ν and µ.

With this cheat sheet, we can calculate the averaged transverse position X̂ at τB to be

X̂δθQ,k,B(n) = − ελ

2(θk − δθQ)δθQ

∫ ∞
−∞

dδ σ(δ)×
(

cos
[
n(θk − δθQ)− nδθQ −

ρ(τB, δ)
θs

sinϕ(τB, δ)
]
−

cos
[
n(θk − δθQ)− ρ(τB, δ)

θs
sinϕ(τB, δ)

])

= − ελ

2(θk − δθQ)δθQ

(
cos
[
n(θk − δθQ)− nδθQ +

ξω0τB
η

]
−

cos
[
n(θk − δθQ) +

ξω0τB
η

])





(60)

which is independent of σ. If we define ψ to be the phase w.r.t. the kick ελ cosnθk, then

it is easy to show that

ψ = tan−1


cos

(
3
2nδθQ − ξω0τB

η

)

sin
(

3
2nδθQ − ξω0τB

η

)

− π

= −π
2
− 3

2nδθQ + ξω0τB
η





(61)

because cot θ = tan(π/2− θ) and the −π is from the “−” sign in front of ελ. (61) makes
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physical sense, because we expect ψ = −π/2 at resonance when τB = 0. Now, from (61),

we can immediately read off the phase difference ψ(ξ, τB) between the tail at −τB w.r.t. the

head at +τB to be

∆ψ(ξ, τB) = −2ξω0τB
η

(62)

which is astonishingly simple for all the work that we have done! However, we must again

remind ourselves that (62) is only valid if δθQ � θs � 1 or δθQ = 0. The second case will

be derived in Case B: θQ ≈ θs.

Case A: Numerical Check

We will verify the formula (62) for two different δθQ for two different chromaticities with

numerically calculated solutions. See Table 2. The first case is when δθQ = −0.5 × 10−3

which in tune units is 8× 10−5 below the betatron tune. The second case is when δθQ =

−2π × (0.5 × 10−3) which is a more realistic 0.0005 tune units below the betatron tune.

In both cases, |δθQ| < θs/2.

Table 2. Parameters used in the simulations

Parameter Value Parameter Value

θQ 20.585 δθQ

{
−0.5× 10−3

−2π × (0.5× 10−3)
θk θQ + δθQ θs 2π × (1.77× 10−3)

ω0 2π × (47.71× 103) s−1 τB ±10−9 ns

ξ 3, 6 δB 1× 10−4

η 0.0028 ε 0.01

y(0) 0.0 ẏ(0) 0

32



Figure 10 The σ distribution is an infintely thin ellipse in the
(τ, δ) plane which passes through ±(τB, δB).

Since (62) is independent of the δ distribution if σ is symmetric about δ = 0, we choose

σ to be the simplest possible distribution that matches to the RF bucket. See Figure 10.

It is an infinitely thin ellipse that passes through the points ±(τB, δB). Therefore, we only

need to average the transverse position over 2 points at (τB , δB) and at (τB ,−δB) to get

the mean head position at τB. We perform a similar average for the tail at −τB.

The expected phase difference using (62) is

∆ψ(ξ = 3) = −36.8◦

∆ψ(ξ = 6) = −73.6◦



 (63)

These values are plotted in Figures 11 for the two different δθQ cases. It is evident from

here that the closer we are to the betatron tune, the better the agreement between the

numerically calculated phase difference and (62). There are phase jumps in the simulated

phase difference which has a period of 2π/δθQ. This can be traced to the long period zeros

of (60)

cos
[
n(θk − δθQ)− nδθQ +

ξω0τB
η

]
− cos

[
n(θk − δθQ) +

ξω0τB
η

]
= 0

⇒ sin
[
n(θk − 3

2δθQ) + ξω0τB
η

]
sin
[

1
2nδθQ

]
= 0




(64)

Therefore, the long period between zeros is 2π/δθQ. See Figure 11.
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Figure 11 These figures show the numerically calculated phase
difference between the tail w.r.t. head for two different δθQ’s and two
different ξ’s. We have superimposed the averaged positions of the
head (grey) and tail (magenta) on this plot. The phase jumps come
every 2π/δθQ which coincides with the nodes of the head and tail
positions.
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Case B: |δθQ| ≈ θs

In this case, the tune tracker PLL is locked to the closest synchrotron line w.r.t. the

betatron tune. The relevant terms for this case from (53) are the ones with coefficients

1/(δθQ − θs). Instead of finding an analytic approximation, we will just numerically cal-

culate the phase difference of the tail w.r.t. head for the case when δθQ = −0.01 ≈ −θs
and ξ = 3. The distributions and parameters are those described in Case A and Table 2.

The results are shown in Figure 12. It is clear that the phase difference does not match

the simple formula (62) derived in Case A.

Figure 12 This plot shows the phase difference between the tail
w.r.t. head for δθQ = −0.01 and ξ = 3. The green line is at −36.8◦

calculated from (62) which clearly does not match what we numeri-
cally calculate.

This section shows that we have to be careful when we measure the chromaticity using

the continuous headtail method. We have to make sure that the kick tune is close to the

betatron tune and not on a synchrotron line.
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Experiment
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THE EXPERIMENT

In this experiment, the basic idea is for us to continuously kick the beam vertically

with the AC-dipole. The phase difference between the head and tail due to this kick is

then measured and plotted for different chromaticities.

Practically, we must first calibrate the knob T:CYINJ which we will use to change the

vertical chromaticity. We do this by measuring the vertical chromaticity ξv for different

T:CYINJ settings. The reason for using uncoalesced rather than coalesced beam is because

it is much easier to measure chromaticity with uncoalesced beam with the traditional

change of RF frequency method than with coalesced beam. The fit that we have found is

ξv = (0.78± 0.03)× T:CYINJ− (16.6± 0.8) (65)

From this fit, we find that the value of ξv when we are given T:CYINJ is approximately

±0.65 units at a confidence level of 95% for the range of T:CYINJ that we will be setting.

See Figure 13.

The experimental setup is shown in Figure 14.† We inject one coalesced bunch, which

contains about 330 × 109 protons, to be used for the entire experiment. We set the

chromaticity with T:CYINJ and then we kick the bunch transversely with the AC-dipole

for a short period of time for each head tail phase measurement. The reason for turning

off the AC-dipole is to keep the vertical emittance growth to a minimum. The exact ramp

waveform of the AC-dipole is shown in Figure 14. The frequency of the kick is set to

0.6 × 10−3 tune units (< Qs = 1.7 × 10−3) below the vertical betatron tune which is at

0.5776. The transverse position of the head and the tail are measured with a fast sampling

oscilloscope and the phase difference is calculated offline. After each change of chromaticity,

† Note that there is no direct diode detector baseband tune (3D-BBQ) electronics in the
setup so that there cannot be any arguments as to whether the phase difference effect is
an artifact of the 3D-BBQ.
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Figure 13 The T:CYINJ knob is calibrated with chromaticity mea-
sured with uncoalesced beam instead of coalesced beam. The dotted
lines are the 95% confidence intervals.

we move the vertical tune if necessary to ensure that the betatron tune remains at 0.5776.

Figure 15 shows some of the parameters we have collected during the experiment. Despite

having set the AC-dipole kick to its minimum value, the vertical emittance T:PVEMIT,

measured with the flying wires system, grows from 17π mm·mrad to 36π mm·mrad during

the experiment. The sigma bunch length σB did not change during this time and is 2.9 ns.

Figure 16 shows an example of the head tail phase difference which we have analysed.

In this example ξv = 4 and τB = 0.8 ns. From here it is unambiguous that there is a phase

difference between the head w.r.t. tail. (Note: in the data analysis, we present phase

differences of the head w.r.t. tail rather than tail w.r.t. head used in the Theory section.

This accounts for the sign difference.)

The measured phase difference ∆ψ for three values of τB = 0.4 ns, 0.8 ns and 1.2 ns

versus ξv are shown in Figure 17. The red line is the expected ∆ψ as a function of ξv

from (62) where we have used the values ω0 and η from Table 2. To check how good our
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Figure 14 The experimental setup consists of an AC-dipole at E17
and a stripline with its electronics at F0. The AC-dipole is ramped
up to its set voltage in 20 ms and stays at flattop for about 100 ms
(equivalent to about 10 synchrotron periods or 5000 turns) and then
ramped down again in 20 ms.

theory fits to the data despite the non-zero vertical emittance, we have calculated χ2 and

the reduced χ2 for these three cases which are summarised in Table 3.

Table 3. χ Comparison between Experiment and Theory

τB (ns) τB/σB χ P(≥ χ) Reduced χ

0.4 0.14 5.8 0.67 0.72
0.8 0.28 9.6 0.29 1.2
1.2 0.41 8.8 0.35 1.1

For τB = 0.4 ns, the probability that χ2 ≥ 5.8 from pure chance is 0.67. This probabil-

ity means that the data only matches the theory moderately well. The reduced χ2 = 0.72
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Figure 15 This figure shows some of the parameters that were
measured during the entire experiment. T:CYINJ was changed and
then the AC-dipole was fired. The Schottky power T:SVPWR spiked
whenever the AC-dipole fired. The vertical emittance T:PVEMIT grew
from 17π mm·mrad to 36π mm·mrad from the start to the end of
the experiment. The beam intensity T:BEAM showed a lifetime that
was similar to that of an undisturbed beam. The rms bunch length
T:SBDPWS was 2.9 ns throughout the experiment.

is not that close to 1 which confirms that the match is not great. When we look at the red

line in Figure 17(a) it is obvious that the χ2 goodness of fit arguments are true.

For τB = 1.2 ns and 2.4 ns, the probability that χ2 ≥ 9.6 and 8.8 from pure chance are

0.29 and 0.35 respectively. From here, we can conclude that the data does not match the

theory at all. Surprisingly, the reduced χ2 ∼ 1 in both cases which means that the linear

fits are reasonably good. This result is clearly misleading from examining Figure 17(b)

and (c). It is obvious that that the theory does not fit the data for these two cases.

We suspect that there is a quadratic component ξ2
v that is not taken care of in the
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Figure 16 This shows the calculated phase difference between the
head w.r.t. tail. This plot is for ξv = 4, τB = 0.8 ns. The phase
difference is ∆ψ = (30 ± 7)◦ during the 100 ms (5000 turns) flattop
period of the AC-dipole kicker. See Figure 14. The ripples during
this time gives us the error of the phase measurement.

theory. By fitting the data with

∆ψ = ξv(aξv + b) (66)

where a and b are fit parameters, we can explore how good this hypothesis is. The blue

curves in Figure 17 show the quadratic fit and Table 4 shows the fit parameters.

Table 4. Quadratic Fit of Data

τB (ns) τB/σB a b Reduced χ

0.4 0.14 0.8± 0.1 1.6± 0.5 0.42
0.8 0.28 1.5± 0.3 3± 1 0.59
1.2 0.41 2.2± 0.4 4± 1 0.97

It is clear from the plots that the quadratic fits are rather good despite the wildly

different reduced χ2 for each case.

Sources of the Quadratic Term

There are several possible sources for the quadratic term ξ2
v . Equation (62) is derived
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Figure 17 These plots show the data analysed for τB = 0.4 ns,
0.8 ns and 1.2 ns. The red line is calculated from (62) and the blue
dotted line is a quadratic fit of the data using coefficients from Ta-
ble 4.
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Figure 18 The effect of resistive wall wake field on the measured
phase difference between the head slice (+0.4 ns from bucket center)
and the tail slice (−0.4 ns from bucket centre) for a single kick . The
red trace shows the effect of impedance at 0.8 MΩ/m, blue trace at
0.2 MΩ/m and the green trace is for zero impedance.

by assuming that the RF bucket is linear and that the transverse emittance is zero. Another

possiblity is that the transverse impedance is influencing the phase shift between the head

and the tail. Whether these possibilities are the sources for the quadratic term will have

to be resolved with computer simulations.

We do not think that second order chromaticity is the source of the quadratic term

because they tend to cancel out when we take the difference between the head and the

tail. The best candidate for the source of the quadratic term would seem to come from the

impedance in the beam pipe. A more careful analysis of the effect of transverse impedance

is provided using a multi-particle simulation driven by a single kick , which includes linear

chromaticity and the effect of a short range resistive wall wake field. In Figure 18 we can

see that the maximum phase difference as a function of chromaticity acquires a quadratic

term as the strength of the wake field is increased.
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Epilogue
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CONCLUSION

We have mostly answered the questions that were asked at the end of Introduction. We

have found an analytic approximation for the weakly forced Hill’s equation which describes

the transverse motion of the beam in the presence of chromaticity for a single particle. We

have checked that our analytic approximation matches very closely to the numerically

integrated solution. From here, we have derived an analytic approximation which shows

that there is a phase difference between the head and tail for a zero transverse emittance

but non-zero longitudinal length bunch. A simple formula for this phase difference has

been derived when the kick tune is very close to the betatron tune. In this case, we have

compared the analytically calculated phase difference to numerically calculated ones and

we have shown them to be very close.

For the experiment, we have used the AC-dipole to excite the beam transversely and

then measured the head-tail phase of the bunch. We have shown that there is a phase

difference between the head and tail and thus have removed any lingering doubts as to

whether the effect is real or not. From the measured data, we have found that there is

a quadratic term which is not taken care of by the theory. Several possible sources, with

short range wake fields being the best candidate, of this term have been proposed which

we will have to resolve with computer simulations.
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APPENDIX I: THE NONLINEAR AVERAGING

The theorems, which we have copied here (with permission) in almost verbatim form

from Hoppensteadt,10 are here for the reader’s convenience.

The system of differential equations to be considered is

dx

dt
= εf(t, εt, x, ε) (67)

or equivalently
dx

dτ
= f

(τ
ε
, τ, x, ε

)
(68)

where x, f ∈ En, |ε| � 1 and the slow time variable τ = εt is retricted to some finite

interval 0 ≤ εt ≤ T <∞.

Hypothesis H1 f(t, τ, x, ε) is a smooth function of its arguments for 0 ≤ t ≤ T/ε,

0 ≤ τ ≤ T , for x in some domain G lying in En, and for ε near zero. Moreover, suppose

that f is an almost periodic function of t, uniformly in the other variables. Specifically,

we assume that f can be expanded in a uniformly convergent generalized Fourier series

f(t, τ, x, ε) = f0(τ, x, ε) +
∞∑

n=1
fn(τ, x, ε)eiωnt (69)

where the frequencies ωn satisfy ωn 6= 0 for n ≥ 1.

Hypothesis H2 Let g = f − f0, and suppose that the integral

∫ t

0
g(t′, τ, x, 0) dt′ =

∫ t

0

[
f(t′, τ, x, 0)− 〈f〉(τ, x, 0)

]
dt′ (70)

is bounded uniformly for 0 ≤ t ≤ T/ε (and so for 0 ≤ τ ≤ T ) and for x ∈ G.

The average of a function f̄ w.r.t. t is defined to be

f̄(τ, x, ε) ≡ lim
T→∞

1
T

∫ T

0

∞∑

n=0
fne

iωnt dt = f0(τ, x, ε) (71)
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Nonlinear Averaging Theorem Suppose conditions H1 and H2 are satisfied and

suppose that the averaged system

dX

dτ
= f0(τ,X, 0), X(0) = η (72)

has a unique solution lying in G for 0 ≤ τ ≤ T . If ε0 is sufficiently small and if |ε| ≤ ε0,

then:

1. There is a unique solution of the problem

dx

dt
= εf(t, εt, x, ε), x(0) = η (73)

for 0 ≤ t ≤ T/ε.

2. The solution lies in G.

3. There is a constant K depending on T and ε0 such that

|x(t)−X(εt)| ≤ K|ε| (74)

for 0 ≤ t ≤ T/ε.

This result shows that the solution of the averaged equation (72) approximates the

solution of the full problem having the same initial data over large (growing) intervals,

0 ≤ t ≤ T/ε.

Now suppose that T = ∞ in conditions H1 and H2. Adding a stability condition can

result in an approximation that is valid on the entire half-line 0 ≤ t <∞. We say that the

system is mean stable if condition H3 is true.

Hypothesis H3 The averaged equation

dX

dτ
= f0(τ,X, 0) (75)

has a rest point, say X∗, that is exponentially asymptotically stable.
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Averaging Theorem for Mean-Stable Systems Let f satisfy H1, H2 and H3.

Let X denote the solution of the initial value problem

dX

dτ
= f0(τ,X, 0), X(0) = η (76)

for 0 ≤ τ <∞. If η is near X∗ and if ε > 0 is sufficiently small, then the problem

dx

dt
= εf(t, εt, x, ε), x(0) = η (77)

has a unique solution for 0 ≤ t <∞ and

x(t, ε) = X(εt) + O(ε) (78)

where the error estimate here holds as ε→ 0+ uniformly for 0 ≤ t <∞.
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