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ABSTRACT: A chromaticity tracker based on a method by D. McGinnis is
proposed. This method starts with the slow modulation of the accelerating RF
which causes the beam to respond to it. This beam modulation can be detected
transversely with a Schottky pickup which after phase demodulation, the chro-
maticity can be calculated from it. However, to perform phase demodulation, the
carrier frequency which is the betatron tune needs to be identified. The identifica-
tion of the carrier frequency falls naturally onto the phase locked loop tune tracker

which when locked to the betatron tune outputs this value in real time.



INTRODUCTION

Tracking the chromaticity especially during snapback is critical for the Large Hadron
Collider (LHC). Various methods have been proposed to do this: the Bruening method,
the head-tail method etc. In this paper, we will discuss the method by D. McGinnis.!
His idea is to phase modulate the beam with the accelerating RF and then detect this
phase modulation with a transverse pickup. By phase demodulating this transverse signal,
the chromaticity can be obtained. Although he had demonstrated that the chromaticity
can be measured, he faced the problem that the betatron tune would drift over time and the
phase demodulation circuit (which is a vector signal analyzer used in phase demodulation

mode) would lose lock and thus would be unable to report the chromaticity. So, this was

abandoned in favour of the head-tail method for measuring chromaticity operationally.?

Once the tune tracker (TT) was declared operational, it became clear that the McGin-
nis method could be made to work in synergy with the TT.3 First, the betatron tune drift
problem would be solved because the T'T would always be locked to the betatron tune (or
to a synchrotron sideband of the betatron tune). Second the phase modulation would be
chosen so that it would be outside the closed loop bandwidth of the T'T and thus the T'T
would not “see” the modulation and respond to it. This choice of modulation frequency is
important because it distinguishes it from the usual RF frequency change method where

the T'T would track the tune whenever the RF frequency wry is changed, i.e.

A Aw
AQy =0 = - X =ARE (1)
p N WRF

where Awgp is the RF frequency change, 7 is the slip factor, Ap/p is the relative mo-
mentum spread and AQ)q is the change in betatron tune from the nominal tune when
Awrp = 0. Unfortunately, this usual method performed poorly whether done by hand or
with the TT when coalesced beam is used because it yielded rather inaccurate chromatic-

ities whenever octupoles were turned on to stabilize the beam.?
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And so, we propose that the McGinnis method be used for the chromaticity tracker
(CT) in the Tevatron and hopefully the results here will be useful for the LHC. In the
next sections, we will go into the theory behind the McGinnis method and other topics
that he had not discussed. We will calculate the parameters necessary for the CT to work
without causing damage to the beam and show measurements which verify the McGinnis’
method. Finally, we will show a possible implementation of the CT. In the Appendices,
we will discuss the 3D-BBQ® (Direct Diode Detection Baseband Tune) which is used at

the LHC for their TT and a very narrow band filter which we propose to use in our CT.



Theory



THEORY

The McGinnis method! starts with the modulation of the RF frequency ¢pp(t) with

a sinusoid
ORE(t) = WRF + Admod X Qmod €OS (Qmodt> (2)
where wgrp is the RF frequency when there is no modulation, A¢,,,q is the amplitude
of the phase modulation and €, ,q is the RF phase modulation. He showed that the

betatron phase ¢3 will then be modulated and its amplitude is linearly dependent on the

chromaticity x. The relationship between ¢3 to x was calculated by him to be

$5(t) = wrevQot + ¢m0d (Q - _) sin Oyt +Ads <Q0 - %) sin <Qst+95> + o3, (3)

where wrey is the revolution frequency, Qg is the betatron tune, h is the harmonic number,
n is the slip factor, A¢g is the amplitude of the synchrotron phase modulation, €2 is the

synchrotron frequency, 0 is the synchrotron phase and ¢g, is the betatron phase at ¢ = 0.

In reality, we measure the betatron tune by taking the difference of the image current

IA between two plates i.e. at a pickup. This difference is

A (0 ¢]
Ia(t) = wrevay 05 [05()] 37 8(6r(6) = 20 — 6:(0))
_ wre2v% % ch Z S Jn(Yi)Jn(Z4) cos (w;mnt+¢+) (4)
wrev% A ZC’ Z Z Im(Y=)Jn(Z-) cos (wkmnt—l—w )
where
. A(bmod . .
Or(t) = wrevt + , Sin (Qmodt> + A¢g sin <Qst + 03> (5)

and qp is the charge of the bunch, A is the betatron amplitude at the pickup, € is the trans-
verse emittance, Cy = 1/2m,C). = 1/7, Y4 = <k + Qo F %) A¢g, Z+ = (k +QoF )—g) %,
Vi = k¢ (0) £ ¢5(0), and wE = <k + Q0> wrev + mQs + nQpod-
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Therefore, (4) shows that at a given betatron mode k, there are an infinite number of
modes m associated with the synchrotron frequency. Around any mode (k,m), there are
an infinite number of modes n associated with the RF modulation. See Figure 1. Note
that these modes are not necessarily “good” because they can be degenerate, for example

if {25 is an integer multiple of €2;,,q-

In general, the T'T will just lock to one synchrotron sideband and so we need to show
we can still obtain the chromaticity by phase demodulating this sideband by using it as
the carrier frequency. Suppose the synchrotron line that the TT locks to is mode (k, m, +),
then its mode frequency is w,jm = <k’—|— Q()) wrevy +m$2s. The spectrum of modes associated

with the RF modulation in temporal space is

o0
In(t k,m,+) o Z JIn(Z4) cos (w]jmt + nQpoqt + ¢+>
n=—00 (6)
= COS (w,":mt + Z4 sin Qp0qt + ¢+)

by using the well known formula

(0]
ez’ZsinH _ Z Jn(Z)einG (7)
n=—00
This result shows that the carrier frequency is wljm and the phase is modulated by

Z4sinQy0qt- More importantly, it also shows that we can phase demodulate using any
synchrotron line as the carrier to obtain y because the peak amplitude of the modulation
Z4 is both independent of m and the amplitude of the synchrotron line. A similar argu-
ment will show that this is also true for the synchrotron line (k,m,—) where Z_ is the

peak modulation amplitude.

3D-BBQ

The LHC TT uses the 3D-BBQ pickup and we have analyzed it in Appendix I in order
to understand how we can use it as a detector for the CT. From there, we have found that

6



(a) Betatron "+ lines only

/
/
l
\
|

\
1 .

/
/
\

>
/ k+1
N\

N
\
\
\
|
l
|
|
/ +
1
k
-

/
AN

\
(b) Zoomed in betatron line and s/\/nchro’rron lines
/

¥
//\\
TN
]
R SRR
k

(9]
k k k k \ | k k

m=—3 m=-2 m=-1 m=0 \m:}/ m=2 m=3
\

N4
(¢c) Zoomed in synchrotron line and forced modulation lines
/

/
e
-
‘//
T[T :
L1 t . o
k k k k k k k

m=1 m=1 m=1 m=1 m=1 m=1 m=1

n=—3 n=—2 n=—1 n=0 n=1 n=2 n=3

Figure 1 (a) The (k + Qg) betatron lines (b) The (k,+) betatron
line with its synchrotron lines (c) The (k, m,+) synchrotron line and
its forced modulation lines. Note that we have just drawn a represen-
tative cartoon here, because k, m,n extends from —oo to +oo.

the 3D-BB(Q measures the tune which corresponds to the £ = 0 mode and thus the formula

for calculating the chromaticity y if the T'T locks to the synchrotron line (k = 0,m, +) is

Z+h
A(bmod - QO} (8)
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Example

For the Tevatron, if we use the 21.4 MHz Schottky detector, we measure the betatron
tune from the lower sideband of k = 449. Since the Tevatron betatron tunes are between
0.5wrey and 0.6wrey, this means that £ — Qg ~ 448.5. The peak of the phase demodulation

|Z_| is related to the chromaticity x by the formula

V2|Z_|h
A¢mod

0.0029‘9018.4|Z_| - 448.5’ if Adyoq = 10° (9)

Xl =n (k‘—Qo)‘

0.0029‘18036.8|Z_| - 448.5) if Adoq = 5°

if |Z_| is measured in units of rad-rms (from a vector signal analyzer) h = 1113, and

n = 0.0029.

If we use the 3D-BBQ as the detector, which in the Tevatron measures the |Z4 | peak,

(8) is approximately

Z1\/2hn
Adimod

= 5230|124+  if Adpeq = 5°

~
~

(10)

Sign of the Chromaticity (Method I)

It is obvious from the previous example that the sign of the chromaticity cannot be
directly determined from just the height of |Z4| alone. The mode lines at (k,m,0;+),
(k,m,1;+) and at (k,m,0;—), (k,m,1;—) can be used to do this. The ratio of these
heights is

R(Z+) = ———5 (11)

For the range of chromaticities —20 < x < 20 in the Tevatron, we can plot the upper and
lower sidebands k + Q¢ ~= 449.5 and k — Qo ~ 448.5 using the same numbers as before.
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Determining the sign of the Chromaticity
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Figure 2  This graph shows how the sign of the chromaticity can
be determined by using R. If x > 0 then R(Z_) > R(Z4).

Figure 2 shows that if x > 0 then R(Z_) > R(Z+) and vice versa.
Sign of the Chromaticity (Method II)

Unfortunately, Method I is not compatible with the TT because TT only uses one
sideband. This method requires that the modulation frequency be transmitted from the
source which is close to the RF cavities to the location of the TT and CT. Once this
modulation frequency is transmitted to the location of the CT, we can mix it with the

demodulated signal from the CT), i.e.
Wy = (Zi sin Qmodt) X B sin (Qmodt + 9) (12)

where B > 0 is the amplitude and € is the phase of the modulation frequency. 6 is
measured at the CT location w.r.t. the modulation frequency at the source. Note that if

Quod ~ (27 % 23) s71, then its wavelength is approximately 107 m, this means that despite
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the fact that the modulation source and the CT are at two different locations, 6 ~ 0. Thus

BZi<

Wi = 1 — cos QQmOdt> (13)

We only want the DC term, Wpc = BZ+ /2

2Wpc Admod
B <k Qo + >T (14)

if we consider only the Z_ term for the 21.4 MHz Schottky. And to get the sign of the

chromaticity, we need to do a little bit of processing to get

2Wpe (k‘ Qo >A¢mod X % Admod

B h n h (15)

Therefore, not only the sign of the chromaticity but the chromaticity itself can be obtained

from here.

It would seem that we would have to pull a cable from the source of the modulation to
the location of the T'T. There is one way to overcome this: we can build two modulation
sources but with each phase locked to the Tevatron RF, therefore there will be a fixed
phase relationship between the two sources and so a cable pull becomes unnecessary. This

technique will be used for the CT.
Choice of Q04

The choice of €,,,q is at least obvious: €2,,,q should not be at the synchrotron fre-
quency €2s. The reason is that we do not want to excite the beam and blow up its emittance
or cause beam loss. The motion of the beam with phase modulation has been completely

solved analytically by Huang. & However, we will do this numerically using the difference
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equations

Ap
©n+1 = pn + 2mhn (—) +
p n-+1

n+1

A¢mod {Sin [27rl/mod Z

()]
k=1 P /K
. = Ap
Sin | 27Vp04 {1 + (—) H }
e+ (3),
Ap Ap eV . .
(?>n+1 = <?>n + —52Es (sm ©On — SN 903)

where V04 = Qmod/wrev, B = 1 is the relativistic beta, e is the the electron charge, V

(16)

is the peak voltage of the RF, F is the energy of the synchronous particle and g is the
synchronous phase. The initial distribution and its projections used in the simulations are
shown in Figure 3. With this distribution we simulate for 2 s with 50 x 103 particles for
Admod = 10°%, Qpoq = Qs and Q0q = Q2s/3. As expected, we find that if Q,,,q = Qs, the
emittance gets diluted by filamentation. From our simulations, we found that if Q,,,q <

Qs/3, the emittance does not change. See Table 1 and Figure 4.

Table 1. Change in Beam Size After 2 seconds

Vnmod | Phase Dist. 0 | Momentum Dist. o Remarks
: )
Vs \ P
0 25.7 0.43 initial distribution
Vs 43.6 0.50 dist. no longer gaussian
vs/3 25.8 0.43 no growth

Another consideration is that we want €,,,,q to be outside the closed loop bandwidth

of the TT because we do not want the TT to track the phase modulation. See Figure 5.
As long as Q,,q > (27 x 20) s~1, this requirement is satisfied. See the section Computer
Stmulations with the TT.
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Figure 3 The initial distribution used in our simulation.

Choice of Ad04

There are two conditions which we have to consider for the choice of A¢,q:
() The maximum change in the tune (ﬁﬁ must be < (0.1 x 1073) X wrey-

(7i) The bucket area, especially up the ramp is reduced with the modulation and this

can be a problem.

The maximum change in tune due to the phase modulation comes from differentiating

(3) w.r.t. time and only looking at the term 5&5 which contains €4

%5

Wrev

_ ’A¢mod X Dnod <Qo - K)‘ <01x1073 (17)
WRF n

For the typical parameters of the Tevatron, assuming that Q,,,q = (27 X 23) s, wpp =

21 x (53 x 10%) s71, Qg = (1 — 0.575), x = 10 and 7 = 0.0029, we see that

A¢poq = 0.07 ~ 4° (18)
12



Modulation vpeg = vs
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Figure 4 The computer simulation which shows that when v,,,q =
vs, the beam clearly dephases. For vy,,q = vs/3, the emittance does
not change.

Bucket Area

With the size of the phase modulation A¢,,,q determined to be about 4°, we will show
that the bucket area is not affected by the phase modulation.
13



Magnitude of Closed Loop PLL Response
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Figure 5 The measured closed loop response® of the TT for various
gain multipliers A. It is clear that as long as A < 10, we want Q,,q >
21 x 20 s 1.

The bucket area A is given approximately by’

A~ 166 [eV - Eg " 1 — sin @y (19)
0 wrr \| 27h|n| 1 + sin g

If we let wpp — ¢Rp(t), then the relative change in bucket area AA/Ay because of

the RF phase modulation is

A QmodA
A _ qu Pmod cos (Qmodt>

Ao PRF (t) (20)
—_ QmodAgbmod ¢ Abmod Amod
~ —T COS (Qmodt> if W—RF < 1.

The maximum reduction in the bucket area is when cos {2,,,,qt = 1, so
(%) _ AdmodShmod (21)
Ao / max WRF

Putting in some numbers for the Tevatron and assuming that Q.4 = (27 x 23) s~ 1,

wrE = 27 % (53 x 10) s71 and A¢ppoq = 4 x 7/180 then

AA 4
— =-3x10 22
( 'AO )max ( )
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which is really small. Thus there should not be any concern about the size of the bucket

when the RF is modulated with the parameters which we intend to use.
Radial Position Change

For the Tevatron, the maximum dispersion is D ~ 10 m and so the maximum change

in radial position Arpyax due to the modulation is
2 5 Qmod APmod

WRF (23)
=260 pm

Armax =

by using the parameters of the previous section. Even with the helix open, there is still
a few millimetres of physical aperture, thus the radial position change should not be a

problem.

Limitations

There are two possible limitations in the McGinnis method. The first, from (3), shows
that this method will fail at transition because n = 0. The second is whether the longi-
tudinal dampers will damp out the phase modulation. We can think of the slow phase
modulation on the beam as a mode 0 coupled bunch mode. The Tevatron longitudinal
damper does not damp mode 0 at this time®, but instead relies on the RF frequency being
set to the correct side of the revolution harmonic to keep the beam stable, i.e. using the
Robinson stability criterion. Therefore, in principle, the longitudinal dampers should not

affect this method.

Computer Simulations with the TT

We want to demonstrate with computer simulations that the TT will track the tune

15



and not see the phase modulation if it is outside the TT’s closed loop bandwidth. In these
simulations, in order to make the oscillations visible, we have set A¢,,q = 20 x 7/180
and compare the results when Q04 = (27 x 1) s7! and (27 x 23) s~1. See Figure 6. We
deliberately placed a step in the betatron tune (blue trace) at 10 s. For both cases, the
TT tracks this step (red trace). However it is clear that for Q,,q = (27 x 1) s71, the
TT also tracks the modulation because the output of the phase detector (green trace) is
close to zero. While for the Q.4 = (27 x 23) s~1 case, we can see from both the red
and green traces that the T'T clearly does not track. Therefore, from this simulation, we
have confirmed that by setting the phase modulation frequency outside the closed loop

bandwidth of the T'T, the TT will ignore the phase modulation but still track the tune.

Note: the maximum beam frequency change (blue trace) between the Q.4 = (27 x 1) s71
and (27 x 23) s~! comes from (17)
Q =2 2
mod =21 X 23 _ oq (24)

Qmod =2 x 1

i.e. we expect and see that the maximum amplitude of the beam frequency oscillation from
the Q,0q = (27 x 23) s~! phase modulation is 23 times larger than the amplitude of the

Qnod = (2 x 1) s~ phase modulation.
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Figure 6 This simulation shows that for the same gain, when
Qod = (27 x 1) 871 the TT tracks the modulation and the TT
is locked because the output of the phase detector is close to zero.
However, when Q,,0q = (27 x 23) s~!, the TT does not track the
modulation but still tracks the step change in frequency. Here, the

output of the phase detector is clearly not close to zero.
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Measurements
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MEASUREMENTS

All these measurements were performed by phase modulating the Tevatron RF at
Qmod = (27 x 23) s7L. The TT was used to lock to the betatron tune. Because the
betatron tune was excited with a clear carrier from the TT, a vector signal analyzer
(VSA) could then be used to demodulate the betatron tune. Unfortunately, for this setup
we could not just type in the TT excitation frequency into the VSA and use zero span
because the betatron tune drifts and so we must rely on the VSA’s phase lock loop to
find the carrier in a non-zero bandwidth. In these experiments, the VSA was set to a
bandwidth of 200 Hz (and thus a 100 Hz span display of the phase demodulation) centred
around the betatron tune. However, in this mode of operation, the VSA update rate was
quite slow ~ 2 to 3 seconds because it needed steady state to be reached. The setup is

shown in Figure 7.

Two sets of data were taken: Agoq = 10° and 5°.F The result from demodulating
the betatron tune by the VSA is shown in Figure 8. Clearly, from here, the height of the
23 Hz peak for the A¢y,,q = 10° case is approximately twice that of the A¢,,,q = 5° case

for the same chromaticity like we would expect from the Z4 formula.

We varied the chromaticity x and measured |Z_| from the VSA. We then used the
formula from (9) to to calculate x from |Z_|. The fit between the expected chromatic-
Ity Xexpected and the chromaticity from McGinnis’ method X\jeGinnis for the two cases

Adpoq = 10° and 5° are shown in Figure 9. The result of the fits were

XMcGinnis = (0.83 & 0-05)Xexpected — (0.6 £0.2) if Agypq = 10°
(25)
XMcGinnis = (1.0 & O-l)XeXpected —(L.7£0.5) if Adpeq = 5°

Note that the sign of the chromaticity, which cannot be determined directly from the

The calibration of A¢,,,q is a factor of 2 larger than what we had expected. This will be
investigated during the March to May 2006 shutdown.
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Figure 7 The setup for these measurements start with modulating
the beam with the RF. The TT is locked to the betatron tune and
its excitation frequency serves as the carrier for the VSA to phase

demodulate the betatron tune.

height of the phase demodulation with the VSA, is assumed to be the same as that of

Xexpected*

Note further that due to the unavailability of the head-tail method because of equip-
ment failure, we were only able to measure chromaticity at one point with the RF change
method (See Introduction) and then extrapolate chromaticity changes with a “calibrated”

knob. And s0, Xexpected does have an error bar associated with it of £0.5 units.

20



Date: 91-14-06 Time: 03:17 AH

TEACE A: Ch1 PH Spectrun

Moarker 23.0 Hz 1499.84  mrodems
d200
mrode s (a}
L irnMoa
20
P e S
Fdiy

| 1N
\w* W “wwmm vy QMJ&

Lenter: 50 Hz Spap: 100 Hz

5]
redris

Date: 91-14-06 Time: 03:18 AH

TREACE Hh Ehl PH Spectrur

Marker 23.0 Hz 75,455 prodems
d200
mrade s (hl
Lintug
20
P e S
Fdiy

[ |
.l |

h L »

v WWT MM : IEh'Y‘JI'Egﬁ_ﬁiEﬁI: ;Lg}‘sl'gcf:;hf‘gvnﬂ&zﬂ

Center: 50 Hz Spon: 100 Hz

8]
redris

Figure 8 These figures show the result of demodulating the be-
tatron tune. (a) shows the case when A¢,,q = 10° and (b) shows
the case when A¢,,,q = 5°. Clearly the height of the 23 Hz peak
of (a) is approximately twice that of (b) like we expect for the same
chromaticity.
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McGinnis® Method vs Expected x
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Figure 9 Comparing the McGinnis’ method to the expected chro-
maticity for A¢y,oq = 10° and 5°.

Other Measurements

One of the things that we need to show is that the TT will ignore the phase modulation.
From Figure 10, the phase modulation is turned on with A¢,,oq = 5°, Qpoq = (27 x23) s
and the TT is on and tracking. Clearly, we see that the TT tracks the tune changes when
the chromaticity knob (the tune change is a side effect of changing the chromaticity with the
chromaticity knob) is changed. As expected, the TT does not track the phase modulation

because A¢,,q is outside the closed loop bandwidth of the TT.

Obviously, there is a limit to the size of A¢yoq- When A¢oq = 40°, the beam
immediately falls out of the bucket (T:SBDPIS) while the total current T:BEAM remains
constant after we turn on the modulation. For A¢,,,q = 5°, the bunched beam current and
the total current remains constant. This experiment shows that a 5° modulation will not
harm the beam. See Figures 10 and 11. The choice of A¢,,q = 5° is also consistent with
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Figure 10 Tracking with A¢y,,q = 5°. The tracked tune T:TRKHT|2]
tracks the tune changes when the chromaticity knob is changed T:CXINJ.
The bunched beam T:SBDPIS and the total current T:BEAM remains

constant during this measurement.

the requirement that we do not want the betatron tune to move by more than 0.1 x 1073,

See the Theory section.

3D-BBQ

We did a study with the 3D-BBQ by replacing the 21.4 MHz Schottky detector shown
in Figure 7 with it. In this setup, the TT still works and tracks at 21.4 MHz. However,
because of the periodicity of the beam at the pickup (See Appendix I), the 21.4 MHz kick
from the TT is “down converted” and appears at baseband. The tune spectra measured by
the 3D-BBQ with the TT turned on and phase modulation on/off is shown in Figure 12. It
is clear from here that extra lines pop up because of the phase modulation. Figure 13 shows

the result after phase demodulating a A¢,,,q = 5° modulation. In this measurement, we
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Figure 11  This shows that DC beam is created when A¢,,,q =
40°. The total current T:BEAM is constant while the bunched beam
T:SBDPIS falls out of the bucket. Note that there is already DC
beam in the Tevatron even before the modulation is turned on because
T:SBDPIS # T:BEAM.

see that the phase demodulated spectra is much cleaner than that from the 21.4 MHz

Schottky of Figure 8.

For the chromaticity measurement, we were only able to measure three points for
Appoq = 5° because of time limitations. The results are shown in Table 2. (Note that
in this measurement, Xexpected Was also extrapolated from one chromaticity measurement
with a “calibrated” knob.) The formula used for calculating xneGinnis comes from (10).
Even from these three data points, we can see that the expected chromaticity and McGinnis
method are close. A more complete and more careful study should show that the 3D-BBQ
will work as a detector for the CT.
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Figure 12 The tune spectra measured by the 3D-BBQ with the
TT on in both (a) and (b). (b) shows the tune spectra with the phase
modulation of A¢,,,q = 40° turned on.

Table 2. Chromaticity Measured with 3D-BBQ

Xexpected XMcGinnis

8* 11
6 7
4 4

“*¥7 is the measured chromaticity. The other xexpected Values are extrapolated from a

“calibrated” knob.
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Figure 13 The demodulated spectrum from the 3D-BBQ for A¢,,oq =
5°.
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IMPLEMENTATION

The simplest and most obvious implementation of the CT is to simply add a very
narrow band filter like a Sliding Goertzel Algorithm (SGA) filter (See Appendix II) to
the output of the phase detector in the TT circuit shown in Figure 14.T The actual
implementation will not be the same as shown in this figure because of the limitations
of the original TT design at Fermilab plus the necessity of building the sign evaluation

circuit.
Our proposed implementation is shown in Figure 15. The components are:
(1) A hardware phase detector circuit.
(13) The software SGA.

(#31) Two phase locked direct digital synthesiser (DDS) modules. One located at the
low level RF room for generating the phase modulation. Another located at the

TT which generates the reference modulation.

The schematics are being drawn up right now and are of course, subject to change as

we refine the final design.

I See reference 3 for a full description of K, G(s) etc. used in this figure.

28



Phase Modulator
Q

mod

<ESE;>________A Phase Phase modulated RF
: to Poweramp
Shlftel" and RF cavities

2
Q0
©
) @
Q)RF
Extract Calculate S f
DC Term Sign 'gn ot x
SGA ]
Phase Detector Integrator & LPF

+@[{d g/s G(s)

beam

|
|
|
|
|
I
|
|
I
response ‘
|
I
|
|
I
|
|
I
|
|

Tune Tracker

Figure 14 The simplest possible implementation of the CT consists
of (a) the addition of a narrow band filter called the Sliding Goertzel
Algorithm (SGA) to the output of the TT phase detector, (b) the
sign evaluation circuit and (c) the phase modulation circuit to the
low level RF system.
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Figure 15 The proposed CT implementation.
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CONCLUSION

We have performed a preliminary study of the McGinnis’ method and have found that
the TT does ignore phase modulations outside its closed loop bandwidth while locked to
the betatron tune. We have also verified that a Q.4 = (27 x 23) s, Adyeq = 5°
phase modulation does not do any harm to the beam and is sufficient for the VSA to
measure it. The studies with the 21.4 MHz Schottky and the 3D-BBQ have shown that the
chromaticity measured with McGinnis’ method is close to what we expect from measuring
the chromaticity at one point with the RF change method (See Introduction) and then
extrapolating it with a “calibrated” knob. With the qualified success of the McGinnis’
method, we have proposed and discussed a design of a CT. The electronics for this design

is being drawn up and built at this time.

In the future, after the shutdown, we will have to verify that this method can track
the chromaticity up the ramp and through the squeeze. More importantly we will need
to show that the beam can survive the phase modulations during this time. Due to time
limitations and equipment failure of the head-tail machinery, we were unable to cross check
McGinnis’s method with the head-tail method. Clearly this needs to be done. All these

plans will be finalized once the March to May 2006 shutdown is complete.
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APPENDIX I: 3D-BBQ

We want to understand how the 3D-BBQ affects the McGinnis method and to see
whether we need to modify any formulas. The 3D-BBQ is essentially a peak detector with
a decay time constant that is adjusted with the resistor and capacitor values shown in
Figure 17. In order to obtain an analytic solution, we will make the approximation that
the current does not decay away between beam passages, i.e. the 3D-BBQ behaves like a

sample and hold circuit. See Figure 16.
We will show that

(1) The folding down of any high frequency modes comes from the turn by turn sam-

pling of the beam.

(7i) The 3D-BBQ enhances the baseband mode by a factor of ~ Tyey /o where o is the

bunch length and Tiey is the period of the revolution.

(747) The formula for calculating the chromaticity is the case when k& = 0.

3D—-BBQ Approximation

Current

T, 2T 3T,
rev rev vy

Time

Figure 16 The approximation that we have made to make the 3D-
BBQ calculation tractable is to ignore the decay (purple trace) of the
sampling between beam passages and replace the decay with constant
current (black trace).
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Pickup without 3D—BBQ

LPF F——r

BBQ

Figure 17 The two setups used in our calculation. The low pass
filter (LPF) cuts off all signals above wrey .

Pickup with Flat Frequency Response

We start with the simplest possible situation where we only have a betatron oscillation
without any RF phase modulation or synchrotron motion, then looking at Figure 17, the

current at point a, b is given by

Ia p(t Z d(t — kTrev) cos kQoTrey + common mode term (26)

where Trey is the period of the revolution and the other symbols have already been defined
in Theory. Taking the difference between I, and I; and ignoring the common mode term,
we have

BA

e k; 8(t — kTvev) cos kQpTrey (27)

Note that this result is identical to (4) if §(t — kTrev) — wWrevl(wrevt — 2n7), Qg4 = 0,

IA(t) =

35



If we define the Fourier transform as

f = [ ot f)et (28)

—00

and use it to Fourier transform (27) we see that

- (29
_ QbA Z eik(QO_w)Trev +€ k(QO+W) rev

=—00 )

The infinite sum of exponentials can be written in terms of J-functions using the Poisson

sum formula

i etk — o i §(x — 2km) (30)

k=—0o0 k=—o0

Applying this formula, we find that (29) becomes

- @A
I = =
A(w) \/E X 2Trev

We can see immediately that in Fourier space, any 2y that is sampled periodically Trey

(0. ¢]
x2m Y O(w— Qo+ kwrey) + 0w + Qo + kwrey)  (31)

=—00

will end up in pairs around kwrey. See Figure 18.

Now when we connect up the 3D-BBQ like in Figure 17. The current at point c is

Igpq(t) = ;1_% 7 X X Z [ ( — kTreV> — u(t — (k+ 1)Trev>} cos kQoTrev

2mo
(32)
where u(t) is the Heaviside operator. The normalization 1/v/27o appears because
1
lim ———e /20" = §(¢) (33)
0—0 /270
Fourier transforming (33), we get
.1 00 \
~ QbA 1 S1n QWTI'GV —Z(U(k—f—l)T
I = lim X e 2/7rev cos QT
BBQ( ) 50 \/— oo %w Z 0Lrev
k=—00
A 1 sin 3w ;
— lim 22 « X 21 S %e‘“"Trev/zx (34)
o—0 /€ 210 W
0
Z i Qo—w)hTrey | (=i(Q+w)kTrey
k=—o0 /
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Current from Pickup
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<
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0] o

i)

5

=

3,

g

<

0 ) 2w 3w 40 Sw 6w

rev rev rev rev rev rev

Frequency ()

Figure 18 The signal () is folded down to baseband and repeated
in pairs around every wrey. In this example Q) = bwrey + AQ and so
the pairs are +A€) around kwrey.

We apply the Poisson sum formula again to get

~ A 1 sin $wT; ,
Igpq(w) = lim B2 X — 27 %e‘“‘)Trev/Qx
o—0 /€ 2o swTrev

00 (35)
27 Z d(w — Qo + kwrey) + d(w + Qo + kwrev)

k=—00
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Finally, we can express jBBQ in terms of Ix

-1
Igpq = i m o 2Yrey 77 rev x e WThev/2 5 _/'1 (Tre"> x Iz (w)
Q= O'—>0 %WTrev 2T g

= (rectangular sampling) X (constant delay of Tyey/2) X
(enhancement of baseband signal by ~ Tiey/0) X Ia(w)
= M(w)Iaw) )

Thus, this result I BBQ shows that the baseband k = 0 mode has been amplified by ~ Trey /o

and this can be quite substantial because o < T}y .

Modulations

With the phase modulation €2,,,,q and synchrotron modulation {25, the current without

the 3D-BBQ comes from (4)

~ wrevqy A >
IA(w; Qpod, 2s) = ri; bTZ
k=

o0
6“/)+ Z Y+ Jn Z+) [(5(me” — w) -+ 5(002_7”“ + CU):|

m,n=—0o0

el Z Tin(Y=)I(Z=) [0 = @) + 0w, + )|

m,n=—0o0

(37)

To obtain fBBQa we notice from (36) that every line 6(w = Q4 kwrey) of I is constant
in size and is multiplied by the transfer function M(w) to obtain iBBQ- Thus we can do
exactly the same thing by isolating each mode (k,m,n,+) in (37) and applying superpo-
sition to sum all the modes if we make the approrimation that the 3D-BBQ samples at a
fixed period Tyey. In fact, the result will look exactly like (36) with Ia(w) coming from
(37).

Referring back to Figure 17, at point d, after going through the low pass filter, we need
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only consider £ = 0 term. Thus

., L
Ipq(wik =0) = lim LTren Nor

s 1
sin 5wT; - 1 T w A 1
sWlrev y G*MTrev/Q % < rev> % revdp % %
g

4./€ 27

eil/H— Z Jm<Y+)Jn(Z+) [6(wo+mn B w) + 5(w0+mn T w)] (38)

m,n=—00

+el= N Tn(Yo)a(2-) [5(w5mn — W) + 8(wy, + w)]

m,n=—00

If the TT locks to mode (k = 0,m,+), we have

s 1
sin swT; . 1 T, w A
sWlrev % e iwTey /2 % ( rev) % revdp %

o 4./€

U In(Ye) Y Tu(Z4) [5(w()+mn —w) oWl + w)]

n—=——oo

Il w;k=0,m,+) = lim
B (e var (39)

Amazingly, the solution of (39) in temporal space is the £ = 0 mode of

gtk = 0.m, 4~ Y [u(t = i) —u(t = (€ + DT )]
f=—00 (40)

COS [wgmgTreV + Z+ sin <Qmod‘€TI‘eV) + ¢+:|

where wkim = (k: + Qo)wrev + mfs. Again, by phase demodulating IBBQ(t; kE=0,m,+),

the chromaticity can be recovered.
Stripline Pickup

We want to know how the 3D-BBQ behaves with a non-flat response pickup because

if we just look at the frequency response of a stripline pickup, there is no DC response
|H(w)| = |sinwL/c| (41)

where L is the length of the pickup and c is the velocity of light. The first positive frequency
peak of |H(w)| is when wL/c = 7/2 and for a 1 m long stripline pickup, this occurs at
75 MHz. But we know that the 3D-BBQ does work with this type of pickup.
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The current from the stripline pickup without the 3D-BBQ is

oo

A
% Z (3t = KTrev) = 6(t = KTrow — 21/¢)] cos kY Trex (42)

However, with the 3D-BBQ which only peak detects the positive d-function and so

QbA

Ipq(t) i [ ( . kTreV> . u(t ~(k+ 1)Trev)] coskQTrey  (43)

which is identical to (32) and so there is no difference to the 3D-BBQ between the flat

frequency response pickup and the stripline pickup.
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APPENDIX II: THE SLIDING GOERTZEL ALGORITHM

The Goertzel algorithm? (GA) is a very efficient way for calculating the Fourier co-
efficient at one point in frequency space and its main application is in telephone tone
detection. The GA is well-known and is usually implemented as an infinite impulse re-
sponse (ITR) filter. For our purposes, we want to use the GA but in a form that is known
as a “sliding” algorithm. Sliding means that the GA is applied for a time sequenced data
{zg,x1,...,2xny_1} and then the sequence is slid to the right {z1, z9, ..., 2} to become the
input for the next application of the GA.T This sliding to the right continues ad infinitum

and so the output is the time evolution of that Fourier coefficient.

We will derive the sliding Goertzel algorithm (SGA) by first rederiving the GA in the
usual form. Unfortunately, the GA in the usual form is not suitable for deriving the SGA
and thus we will have to derive another form which we will call the modified GA. With the
modified GA, we can easily derive the SGA. We will show that the SGA is very efficient for
calculating the Fourier coefficient at one point compared to the discrete Fourier transform
(DFT) and even the fast Fourier transform (FFT). We can speed the SGA up even further

with a careful choice of the sampling frequency.

Goertzel Algorithm

We start with the definition of the N point DFT of the sequence {z(0),z(1),...,x(N —

2),z(N —1)} .
X(k)y="Y a(n)W" (44)
n=0

where W]]f,” = ¢ 27kn/N " If we multiply the rhs of (44) by 1 = 127k — W](,kN where

Note that sliding to the right need not be one sample, but for our purposes we will only
slide to the right by one.
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k € Z, we see that

N-1
X(k)y= 3" amwy (45)
n=0

In order to write (45) as a difference equation, we can expand the rhs and see that

k(N—1)

X (k) = a(OWM +a()Wy +ota(N = 1)WF

_ [ N Hx(o)WJ;’f +a(1) [ Wik + x(Z)] Wik + .. _]W&k +a(N 1) Wyt

(46)
Thus we can define y;.(n) as
ye(n) = ye(n = HW* +a(n) (47)
with y;.(—1) = 0. Therefore, it is clear from (46) that
X(k) =y (N) only if z(N)=0. (48)
! The DFT transfer function Hppp(z) can be easily read off from (47)
Hper(s) = —— (49)
)=
bt 1— Wikt
The GA transfer function H;(2) is obtained by multiplying (49) with
1— Wkt
e )
so that
1—Wkez1
Hg(2) N (51)

T 12 cos(2mk/N)z—1 + 2—2
which is a very efficient way of calculating the Fourier coefficient at one point if the direct
form II of the filter is used. The direct form of the filter which comes straight from (51)

is shown in Figure 19(a). By changing the order of the filters F| and Fj, it becomes the

The statement “if x(N) = 0” is critical and is nearly always missing in textbooks!” because
clearly X (k) # y;.(IN) if this condition is omitted.
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direct form II realization. See Figure 19(b). This gets us the following difference equations

which are found in all the literature

vi(n) = 2cos <27rk/N)vk(n —1)—vp(n—2)+ x(n) 52)

yp(n) = vg(n) = Wvg(n — 1)
with v(n) = 0 for n < 0. The efficiency of the direct form II comes from calculating

N times the completely real recursive relationship v(n) and then evaluating the complex

value y..(IN) = X (k) only once at the end.
Modified Goertzel Algorithm

Unfortunately, the condition “only if z(N) = 0” in (48) is an annoyance for deriving the
SGA since it is clear that the sequence {...,0,2(0),z(1),z(2),...,2(N —1),z(N),z(N +
1),...}, z(n) is not necessarily zero for n > 0. So instead of using the y(n) from (47), we

define the following
/ R, —k —k
Yy (n) = [yk(n - W'+ x(n)} Wy (53)

with g (—1) = 0 which allows us to get out of our conundrum
X (k) = gh(N = 1) = [gh(N = 2)W5F + (N - 1)|wgh (54)

which does not have the z(NN) = 0 condition. The modified DFT transfer function H{,pp(2)

is read off from (53)

—k
WN

o Wt Hppr(2) (55)
Wy

Hppr(z) =
The modified GA transfer function H,(z) is obtained by multiplying (50) by (55)

W—k<1 _wk Z—1>

N N

HA(2) = —WkH 56
cl2) 1 — 2cos(2mk/N)z—1 + 22 ~ He(?) (56)
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(a) Direct Form

x(n) v, (1)
(b) Direct Form II
F, F,
#(n) (D) )

2 cos(2nk/N)

L0

Figure 19 (a) The direct form of H¢ is shown. (b) Direct form II is
the efficient implementation of the GA. The filter F] is only evaluated
once for calculating yi(N) = X (k) with (V) = 0.
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Thus by putting in the multiplicative constant WJ\;k to the direct form IT implementation of
the GA shown in Figure 19(b) we are liberated from the condition z(/N) = 0 for calculating

X (k). See Figure 20. From here, the difference equations are

v(n) = 2cos <27rk:/N>vk(n —1) —vp(n—2)+z(n)

v (n) = WyFop(n) — vg(n — 1)

Modified Goertzel Algorithm

x(n) v (n)

2 cos(2nk/N)

Figure 20 The implementation of the modified GA. Again similar
to the GA, the filter F3 is only evaluated once for calculating y}g(N —
1) = X (k).
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Sliding Goertzel Algorithm

We have to go back to (44) and introduce the notation

N-1
Xm(k) =Y a(m+n)Wy' (58)
n=0

which is the DFT of the sequence which starts at x(m). For example,

N-1
Xo(k) = > a(m)Wr (59)
n=0
is the DFT of the sequence {z(0),z(1),...,2z(N — 1)} and
N-1
Xi(k) =Y a(n+ ywh
n=0

is the DFT of the sequence {x(1),z(2),...,z(N)}. It is easy to show that X, (k) is related

to X,,—1(k) by the following expression
Xin(k) = [ Xm-1(k) —x(m — 1) + z(m — 1+ N)|Wy* (60)

Unfortunately, this is not quite useful for deriving the difference equation. We need to do
a little bit more work where we renumber the z()’s: (0) — z(—N+1), (1) —» z(—N+2),

. (N —=1) — x(0), x(N) — z(1), .... See Figure 21. So (60) becomes
X (k) = | Xp-1(k) — x(m — N) + 2(m) [W* (61)
which is a difference equation in X,,.

Thus the sliding DFT transfer function Hgppr(2) is

Hgppr(2) = (62)

Using the same trick as before, we multiply (62) by (50) to obtain the SGA transfer function

Hgq(2)

_ N k(1 _wwk ,—1
Hsgalz) = <11 — 2COS>(;}Z]]\€[/]S[1)ZI/I:]-VZ2> - (1 B ZﬁN)Hé(Z) (63)
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0 1 2 3 4 5 ... N=2 N N+2 N+4

LA CTETITLT

—N+2  —N+4 —N+6

Figure 21  The numbering of the input sequence z(n) is renum-
bered as shown here.

Finally, the SGA implementation is shown in Figure 22 and the difference equations are

vi(n) = 2cos <27rk:/N)vk(n —1)—vp(n—2)+2x(n) —x(n— N)
(64)
Xn(k) = WyFvg(n) — vp(n - 1)

Note that because of the renumbering, v;(n) = 0 and x(n) =0 for n < —N.
Example

For this example, let the input sequence be {...,0,0,xq,z1,x2,3,24,...}. The N =

4 point DFT of the sequence {xq, 1, x93, 3} is
X(k)=zg+ W+ zoW? + 2 W3 (65)

where W = Wf We will first look at the direct form II GA from Figure 19(b) and the
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Sliding Goertzel Algorithm

z(n)

2 cos(2nk/N

Figure 22 The implementation of the SGA is with the addition of
Fy to the modified GA shown in Figure 20.

difference equation from (52), we have

v (0) =z

V(1) = av(0) + 21 = azg + 21

vp(2) = (¢ — Dag + axy + 9

vp(3) = (a3 — 2a)z + (a® — 1)z + axy + 23

vp(4) = (a* = 3a® + 1)zg + (a® — 2a)z1 + (a® — 1)ag + azz + z(4)
48
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where v(n) =0 for n <0, a = 2cos(2rk/N) and z(4) = 0. Therefore
ye(4) = (a* = 3a® + 1)z + (¢ — 20)z1 + (a® — 1)29 + axg— )
W (a® — 2a)zg + (a® — 1)z + azy + :1;3]

=x0+x1 W+ x2W2 + $3W3

= X (k) J

where we have used a = W1 + W and the cyclic nature of W, i.e. Wt =1.

(67)

For the modified GA using Figure 20, we calculate the v;.’s like the above, and calculate

yﬁﬂ(i’)) once at the end to get

Ve(3) = W lup(3) — 0 (2)
= WL(a® — 2a)2 + (a® — )21 + azy + 23| — (a® — 1)z + azy + 29
=xg+x1W + x2W2 + x3W3
= X(k)

as required.

(68)

Finally, for the SGA, we have to renumber the input sequence: zg — z(-3), 1 —

x(=2), x9 — x(—1), x5 — x(0), x4 — x(1), etc. and so
vp(=3) = 2(=3) = xo )
v (—2) = avg(=3) + 2(—=2) = axp + 21
vp(=1) = (a® = 1)zg + azy + 22

v (0) = (a3 — 2a)z9 + (a® — 1)21 + azy + 3

vp(1) = (a* — 3a® + 1)z + (a® — 2a)z1 + (a® — 1)a9 + axg + x4 )
where z(n) = 0 and vi(n) =0 for n < —4.
Xo(k)y=w! [(a?’ — 2a)z0 + (a> — V)1 + azo + 23| — (a> — 1)y — az) — 9
=x0+x W+ .TQWQ + $3W3

= X (k)
49
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and sliding over to the next sequence {x1,x2, 3, x4}, the SGA gives

X (k)y=w! [(a4 —3a® + Dzg + (a® — 2a)z1 + (a® — g + azz + x4 | —
(a3 — 2a)xg — (a® — 1)1 — azg — 23 (71)

=x1 +xoW + I3W2 + I4W3

which is exactly what we expect the DFT to be (and the xq term magically disappears

because its coefficient contains (1 — W%) = 0).

Efficiencies

The efficiency of the N point DFT, SDFT, GA, modified GA, SGA, and Radix-2 FFT
for calculating one point in Fourier space is summarised in Table 3. Clearly, after doing the
calculations for the first time, SGA wins hands down because the number of multiplies and
additions is constant. In fact, the SGA efficiency can be further improved by a judicious

choice of sampling frequency. This will be discussed in the next section.

Table 3. One Fourier Point from IN Real Data Points Efficiencies

Xo(k) X1(k)

Algorithm # Multiplies # Adds # Multiplies # Adds
DFT 2N 2N 2N 2N
SDFT 2N 2N 4 4

GA N +2 2N N +2 2N
modified GA N+1 2N -1 N+1 2N -1

SGA N+1 2N -1 3 5
special SGA 0 2N —4 0 2
Radix-2 FFT logy N + 1 3logy N + 1 logy N + 1 3logy N + 1
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Special SGA

Since the modulation of the betatron tune is at a fixed frequency f;,, we can in fact
choose the sampling frequency fg so that cos(2rk/N) = 0.1 In particular, k = N fi,/fg
and thus we require fy,/fg = (2p + 1)/4 where p € N. However, we require fg > fm
and so there are only two solutions, i.e. when p = 0 or 1. This implies that fg = 4f,, or
fs = 4fm/3. The Nyquist criterion demands that fg > 2f;, and so there can be only one

solution

fs=4fm (72)

The difference equations for this special SGA are
vp(n) = —vg(n —2) + (n) —z(n - N)
(73)
Xn(k) = ivg(n) —vgp(n — 1)
with v (n) =0 and z(n) =0 for n < —N.
We can immediately see the advantages of the special SGA:

() No multiplications. This gives an immediate speed up.

(7i) No round off errors from the cosine term. The SGA filter is on the edge of instability
because the poles are on the unit circle in the z-transform plane. Any rounding
errors can move the poles off the unit circle and thus cause the filter to become

unstable.
(7i) fm is in the centre of a frequency bin and so there is no leakage to adjacent bins.

The frequency response of the special SGA for N = 40 and N = 80 is shown in

Figure 23.
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Figure 23 The magnitude response of the special SGA when N =
40 and 80. Notice that the peak of the response is exactly at fg/4.
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